TU Darmstadt / ULB / TUbiblio

Ontology-based contextual coherence scoring

Porzel, Robert ; Gurevych, Iryna ; Müller, Christof (2003)
Ontology-based contextual coherence scoring.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper we present a contextual extension to ONTOSCORE, a system for scoring sets of concepts on the basis of an ontology. We apply the contextually enhanced system to the task of scoring alternative speech recognition hypotheses (SRH) in terms of their semantic coherence. We conducted several annotation experiments and showed that human annotators can reliably differentiate between semantically coherent and incoherent speech recognition hypotheses (both with and without discourse context). We also showed, that annotators can reliably identify the overall best hypothesis from a given n-best list. While the original ONTOSCORE system correctly assigns the highest score to 84.06% of the corpus, the inclusion of the conceptual context increases the number of correct classifications to yield 86.76%, given a baseline of 63.91% in both cases.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2003
Autor(en): Porzel, Robert ; Gurevych, Iryna ; Müller, Christof
Art des Eintrags: Bibliographie
Titel: Ontology-based contextual coherence scoring
Sprache: Deutsch
Publikationsjahr: 2003
Buchtitel: Proceedings of the Fourth SIGdial Workshop on Discourse and Dialogue
Kurzbeschreibung (Abstract):

In this paper we present a contextual extension to ONTOSCORE, a system for scoring sets of concepts on the basis of an ontology. We apply the contextually enhanced system to the task of scoring alternative speech recognition hypotheses (SRH) in terms of their semantic coherence. We conducted several annotation experiments and showed that human annotators can reliably differentiate between semantically coherent and incoherent speech recognition hypotheses (both with and without discourse context). We also showed, that annotators can reliably identify the overall best hypothesis from a given n-best list. While the original ONTOSCORE system correctly assigns the highest score to 84.06% of the corpus, the inclusion of the conceptual context increases the number of correct classifications to yield 86.76%, given a baseline of 63.91% in both cases.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Telekooperation
Hinterlegungsdatum: 31 Dez 2016 12:59
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen