TU Darmstadt / ULB / TUbiblio

Classification of large Graphs by a local Tree decomposition

Emmert-Streib, Frank ; Dehmer, Matthias ; Kilian, Jürgen (2005)
Classification of large Graphs by a local Tree decomposition.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We present a binary graph classifier (BGC) which allows to classify large, unweighted, undirected graphs. This classifier is based on a local decomposition of the graph for each node in generalized trees. The obtained trees, forming the tree set of the graph, are then pairwise compared by a generalized treesimilarity- algorithm (GTSA) and the resulting similarity scores determine a characteristic similarity distribution of the graph. Classification in this context is defined as mutual consistency for all pure and mixed tree sets and their resulting similarity distributions in a graph class. We demonstrate the application of this method to an artificially generated data set and for data from microarray experiments of cervical cancer.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2005
Autor(en): Emmert-Streib, Frank ; Dehmer, Matthias ; Kilian, Jürgen
Art des Eintrags: Bibliographie
Titel: Classification of large Graphs by a local Tree decomposition
Sprache: Deutsch
Publikationsjahr: 2005
Buchtitel: Proceeedings of DMIN'05, International Conference on Data Mining
Kurzbeschreibung (Abstract):

We present a binary graph classifier (BGC) which allows to classify large, unweighted, undirected graphs. This classifier is based on a local decomposition of the graph for each node in generalized trees. The obtained trees, forming the tree set of the graph, are then pairwise compared by a generalized treesimilarity- algorithm (GTSA) and the resulting similarity scores determine a characteristic similarity distribution of the graph. Classification in this context is defined as mutual consistency for all pure and mixed tree sets and their resulting similarity distributions in a graph class. We demonstrate the application of this method to an artificially generated data set and for data from microarray experiments of cervical cancer.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Telekooperation
Hinterlegungsdatum: 31 Dez 2016 12:59
Letzte Änderung: 03 Jun 2018 21:29
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen