Flentge, Felix (2006)
Locally Weighted Interpolating Growing Neural Gas.
In: IEEE Transactions on Neural Networks, 17 (6)
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
In this paper, we propose a new approach to function approximation based on a growing neural gas (GNG), a self-organizing map (SOM) which is able to adapt to the local dimension of a possible high-dimensional input distribution. Local models are built interpolating between values associated with the map's neurons. These models are combined using a weighted sum to yield the final approximation value. The values, the positions, and the "local ranges" of the neurons are adapted to improve the approximation quality. The method is able to adapt to changing target functions and to follow nonstationary input distributions. The new approach is compared to the radial basis function (RBF) extension of the growing neural gas and to locally weighted projection regression (LWPR), a state-of-the-art algorithm for incremental nonlinear function approximation
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2006 |
Autor(en): | Flentge, Felix |
Art des Eintrags: | Bibliographie |
Titel: | Locally Weighted Interpolating Growing Neural Gas |
Sprache: | Deutsch |
Publikationsjahr: | 2006 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | IEEE Transactions on Neural Networks |
Jahrgang/Volume einer Zeitschrift: | 17 |
(Heft-)Nummer: | 6 |
Kurzbeschreibung (Abstract): | In this paper, we propose a new approach to function approximation based on a growing neural gas (GNG), a self-organizing map (SOM) which is able to adapt to the local dimension of a possible high-dimensional input distribution. Local models are built interpolating between values associated with the map's neurons. These models are combined using a weighted sum to yield the final approximation value. The values, the positions, and the "local ranges" of the neurons are adapted to improve the approximation quality. The method is able to adapt to changing target functions and to follow nonstationary input distributions. The new approach is compared to the radial basis function (RBF) extension of the growing neural gas and to locally weighted projection regression (LWPR), a state-of-the-art algorithm for incremental nonlinear function approximation |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik > Telekooperation 20 Fachbereich Informatik |
Hinterlegungsdatum: | 31 Dez 2016 12:59 |
Letzte Änderung: | 15 Mai 2018 12:01 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |