TU Darmstadt / ULB / TUbiblio

Locally Weighted Interpolating Growing Neural Gas

Flentge, Felix (2006)
Locally Weighted Interpolating Growing Neural Gas.
In: IEEE Transactions on Neural Networks, 17 (6)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In this paper, we propose a new approach to function approximation based on a growing neural gas (GNG), a self-organizing map (SOM) which is able to adapt to the local dimension of a possible high-dimensional input distribution. Local models are built interpolating between values associated with the map's neurons. These models are combined using a weighted sum to yield the final approximation value. The values, the positions, and the "local ranges" of the neurons are adapted to improve the approximation quality. The method is able to adapt to changing target functions and to follow nonstationary input distributions. The new approach is compared to the radial basis function (RBF) extension of the growing neural gas and to locally weighted projection regression (LWPR), a state-of-the-art algorithm for incremental nonlinear function approximation

Typ des Eintrags: Artikel
Erschienen: 2006
Autor(en): Flentge, Felix
Art des Eintrags: Bibliographie
Titel: Locally Weighted Interpolating Growing Neural Gas
Sprache: Deutsch
Publikationsjahr: 2006
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Transactions on Neural Networks
Jahrgang/Volume einer Zeitschrift: 17
(Heft-)Nummer: 6
Kurzbeschreibung (Abstract):

In this paper, we propose a new approach to function approximation based on a growing neural gas (GNG), a self-organizing map (SOM) which is able to adapt to the local dimension of a possible high-dimensional input distribution. Local models are built interpolating between values associated with the map's neurons. These models are combined using a weighted sum to yield the final approximation value. The values, the positions, and the "local ranges" of the neurons are adapted to improve the approximation quality. The method is able to adapt to changing target functions and to follow nonstationary input distributions. The new approach is compared to the radial basis function (RBF) extension of the growing neural gas and to locally weighted projection regression (LWPR), a state-of-the-art algorithm for incremental nonlinear function approximation

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik > Telekooperation
20 Fachbereich Informatik
Hinterlegungsdatum: 31 Dez 2016 12:59
Letzte Änderung: 15 Mai 2018 12:01
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen