TU Darmstadt / ULB / TUbiblio

Improving Maximum Margin Matrix Factorization <b> (best machine learning paper award)</b>

Weimer, Markus ; Karatzoglou, Alexandros ; Smola, Alex
Hrsg.: Daelemans, Walter ; Goethals, Bart ; Morik, Katharina (2008)
Improving Maximum Margin Matrix Factorization <b> (best machine learning paper award)</b>.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Collaborative filtering is a popular method for personalizing product recommendations. Maximum Margin Matrix Factorization (MMMF) has been proposed as one successful learning approach to this task and has been recently extended to structured ranking losses. In this paper we discuss a number of extensions to MMMF by introducing offset terms, item dependent regularization and a graph kernel on the recommender graph. We show equivalence between graph kernels and the recent MMMF extensions by Mnih and Salakhutdinov (Advances in Neural Information Processing Systems 20, 2008). Experimental evaluation of the introduced extensions show improved performance over the original MMMF formulation.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2008
Herausgeber: Daelemans, Walter ; Goethals, Bart ; Morik, Katharina
Autor(en): Weimer, Markus ; Karatzoglou, Alexandros ; Smola, Alex
Art des Eintrags: Bibliographie
Titel: Improving Maximum Margin Matrix Factorization <b> (best machine learning paper award)</b>
Sprache: Deutsch
Publikationsjahr: 2008
Verlag: Springer
Buchtitel: Machine Learning and Knowledge Discovery in Databases
Reihe: LNAI
Band einer Reihe: 5211
Kurzbeschreibung (Abstract):

Collaborative filtering is a popular method for personalizing product recommendations. Maximum Margin Matrix Factorization (MMMF) has been proposed as one successful learning approach to this task and has been recently extended to structured ranking losses. In this paper we discuss a number of extensions to MMMF by introducing offset terms, item dependent regularization and a graph kernel on the recommender graph. We show equivalence between graph kernels and the recent MMMF extensions by Mnih and Salakhutdinov (Advances in Neural Information Processing Systems 20, 2008). Experimental evaluation of the introduced extensions show improved performance over the original MMMF formulation.

ID-Nummer: TUD-CS-2008-1210
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik > Telekooperation
20 Fachbereich Informatik
Hinterlegungsdatum: 31 Dez 2016 12:59
Letzte Änderung: 15 Mai 2018 12:01
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen