TU Darmstadt / ULB / TUbiblio

Predicting Cargo Train Failures: A Machine Learning Approach for a Lightweight Prototype

Kauschke, Sebastian ; Fürnkranz, Johannes ; Janssen, Frederik (2016)
Predicting Cargo Train Failures: A Machine Learning Approach for a Lightweight Prototype.
Bari, Italy (19.10.2016-21.10.2016)
doi: 10.1007/978-3-319-46307-0_10
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In cargo transportation, reliability is a crucial issue. In the case of railway traffic, the consequences of locomotive failure are not limited to the affected machine, but are propagated through the railway network and may affect public transport as well. Therefore it is desirable to predict and avoid failures. In order to do this, constant monitoring of the trains’ systems and measurement of the relevant variables is required, but often not implemented. In this paper we leverage the existing technology of the 185 locomotive series and build a layered model for power converter failure prediction that can be applied without additional technology. We train instance anomaly detectors based on the pattern structure of the locomotives’ diagnostic messages from historical data records. For this purpose we selected rule and decision tree learning because they can be easily implemented in the existing software, whereas more complex classifiers would require costly software adaptations. In order to predict a time series of instances, we construct a meta classification layer. We then evaluate our model on the data of 180 locomotive tours by leave one out classification. The results show that the meta classifier improves classification accuracy, which will allow us to use this technology in a fielded prototype installation without disturbing daily operations.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2016
Autor(en): Kauschke, Sebastian ; Fürnkranz, Johannes ; Janssen, Frederik
Art des Eintrags: Bibliographie
Titel: Predicting Cargo Train Failures: A Machine Learning Approach for a Lightweight Prototype
Sprache: Englisch
Publikationsjahr: Oktober 2016
Ort: Cham
Verlag: Springer
Buchtitel: Discovery Science - 19th International Conference, DS 2016, Bari, Italy, October 19-21, 2016, Proceedings
Veranstaltungsort: Bari, Italy
Veranstaltungsdatum: 19.10.2016-21.10.2016
DOI: 10.1007/978-3-319-46307-0_10
Kurzbeschreibung (Abstract):

In cargo transportation, reliability is a crucial issue. In the case of railway traffic, the consequences of locomotive failure are not limited to the affected machine, but are propagated through the railway network and may affect public transport as well. Therefore it is desirable to predict and avoid failures. In order to do this, constant monitoring of the trains’ systems and measurement of the relevant variables is required, but often not implemented. In this paper we leverage the existing technology of the 185 locomotive series and build a layered model for power converter failure prediction that can be applied without additional technology. We train instance anomaly detectors based on the pattern structure of the locomotives’ diagnostic messages from historical data records. For this purpose we selected rule and decision tree learning because they can be easily implemented in the existing software, whereas more complex classifiers would require costly software adaptations. In order to predict a time series of instances, we construct a meta classification layer. We then evaluate our model on the data of 180 locomotive tours by leave one out classification. The results show that the meta classifier improves classification accuracy, which will allow us to use this technology in a fielded prototype installation without disturbing daily operations.

ID-Nummer: TUD-CS-2016-14710
Zusätzliche Informationen:

ISBN 978-3-319-46307-0

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Knowledge Engineering
20 Fachbereich Informatik > Telekooperation
LOEWE
LOEWE > LOEWE-Schwerpunkte
LOEWE > LOEWE-Schwerpunkte > NICER – Vernetzte infrastrukturlose Kooperation zur Krisenbewältigung
Hinterlegungsdatum: 15 Mär 2017 21:16
Letzte Änderung: 16 Okt 2018 13:26
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen