TU Darmstadt / ULB / TUbiblio

What to be? - Electronic Career Guidance Based on Semantic Relatedness

Gurevych, Iryna ; Müller, Christof ; Zesch, Torsten (2007)
What to be? - Electronic Career Guidance Based on Semantic Relatedness.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We present a study aimed at investigating the use of semantic information in a novel NLP application, Electronic Career Guidance (ECG), in German. ECG is formulated as an information retrieval (IR) task, whereby textual descriptions of professions (documents) are ranked for their relevance to natural language descriptions of a person’s professional interests (the topic). We compare the performance of two semantic IR models: (IR-1) utilizing semantic relatedness (SR) measures based on either wordnet or Wikipedia and a set of heuristics, and (IR-2) measuring the similarity between the topic and documents based on Explicit Semantic Analysis (ESA) (Gabrilovich and Markovitch, 2007). We evaluate the performance of SR measures intrinsically on the tasks of (T-1) computing SR, and (T-2) solving Reader’s Digest Word Power (RDWP) questions.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2007
Autor(en): Gurevych, Iryna ; Müller, Christof ; Zesch, Torsten
Art des Eintrags: Bibliographie
Titel: What to be? - Electronic Career Guidance Based on Semantic Relatedness
Sprache: Englisch
Publikationsjahr: 2007
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics
URL / URN: http://aclweb.org/anthology/P07-1130
Kurzbeschreibung (Abstract):

We present a study aimed at investigating the use of semantic information in a novel NLP application, Electronic Career Guidance (ECG), in German. ECG is formulated as an information retrieval (IR) task, whereby textual descriptions of professions (documents) are ranked for their relevance to natural language descriptions of a person’s professional interests (the topic). We compare the performance of two semantic IR models: (IR-1) utilizing semantic relatedness (SR) measures based on either wordnet or Wikipedia and a set of heuristics, and (IR-2) measuring the similarity between the topic and documents based on Explicit Semantic Analysis (ESA) (Gabrilovich and Markovitch, 2007). We evaluate the performance of SR measures intrinsically on the tasks of (T-1) computing SR, and (T-2) solving Reader’s Digest Word Power (RDWP) questions.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Telekooperation
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 31 Dez 2016 12:59
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen