TU Darmstadt / ULB / TUbiblio

Exploring Automatic Theme Identification: A Rule-Based Approach.

Schwarz, Lara ; Bartsch, Sabine ; Eckart de Castilho, Richard ; Teich, Elke (2008)
Exploring Automatic Theme Identification: A Rule-Based Approach.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Knowledge about Theme-Rheme serves the interpretation of a text in terms of its thematic progression and provides a window into the topicality of a text as well as text type (genre). This is potentially relevant for NLP tasks such as information extraction and text clas- sification. To explore this potential, large corpora annotated for Theme-Rheme organization are needed. We report on a rule-based system for the automatic identification of Theme to be employed for corpus annotation. The rules are manually derived from a set of sentences parsed syntactically with the Stanford parser and analyzed in terms of Theme on the basis of Systemic Functional Grammar (SFG). We describe the development of the rule set and the automatic procedure of Theme identification and assess the validity of the approach by application to some authentic text data.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2008
Autor(en): Schwarz, Lara ; Bartsch, Sabine ; Eckart de Castilho, Richard ; Teich, Elke
Art des Eintrags: Bibliographie
Titel: Exploring Automatic Theme Identification: A Rule-Based Approach.
Sprache: Englisch
Publikationsjahr: September 2008
Verlag: Mouton de Gruyter
Buchtitel: Text Resources and Lexical Knowledge. Selected Papers from the 9th Conference on Natural Language Processing KONVENS 2008
URL / URN: https://www.degruyter.com/view/product/39088
Kurzbeschreibung (Abstract):

Knowledge about Theme-Rheme serves the interpretation of a text in terms of its thematic progression and provides a window into the topicality of a text as well as text type (genre). This is potentially relevant for NLP tasks such as information extraction and text clas- sification. To explore this potential, large corpora annotated for Theme-Rheme organization are needed. We report on a rule-based system for the automatic identification of Theme to be employed for corpus annotation. The rules are manually derived from a set of sentences parsed syntactically with the Stanford parser and analyzed in terms of Theme on the basis of Systemic Functional Grammar (SFG). We describe the development of the rule set and the automatic procedure of Theme identification and assess the validity of the approach by application to some authentic text data.

ID-Nummer: TUD-CS-2008-11511
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 31 Dez 2016 14:29
Letzte Änderung: 28 Sep 2018 11:19
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen