TU Darmstadt / ULB / TUbiblio

A Data Generator for Cloud-scale Benchmarking

Rabl, Tilmann ; Frank, Michael ; Sergieh, Hatem Mousselly ; Kosch, Harald (2011)
A Data Generator for Cloud-scale Benchmarking.
Singapore
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In many fields of research and business data sizes are breaking the petabyte barrier. This imposes new problems and research possibilities for the database community. Usually, data of this size is stored in large clusters or clouds. Although clouds have become very popular in recent years, there is only little work on benchmarking cloud applications. In this paper we present a data generator for cloud sized applications. Its architecture makes the data generator easy to extend and to configure. A key feature is the high degree of parallelism that allows linear scaling for arbitrary numbers of nodes. We show how distributions, relationships and dependencies in data can be computed in parallel with linear speed up.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2011
Autor(en): Rabl, Tilmann ; Frank, Michael ; Sergieh, Hatem Mousselly ; Kosch, Harald
Art des Eintrags: Bibliographie
Titel: A Data Generator for Cloud-scale Benchmarking
Sprache: Englisch
Publikationsjahr: 2011
Verlag: Springer-Verlag
Buchtitel: Proceedings of the Second TPC Technology Conference on Performance Evaluation, Measurement and Characterization of Complex Systems
Reihe: TPCTC'10
Veranstaltungsort: Singapore
URL / URN: https://link.springer.com/chapter/10.1007/978-3-642-18206-8_...
Kurzbeschreibung (Abstract):

In many fields of research and business data sizes are breaking the petabyte barrier. This imposes new problems and research possibilities for the database community. Usually, data of this size is stored in large clusters or clouds. Although clouds have become very popular in recent years, there is only little work on benchmarking cloud applications. In this paper we present a data generator for cloud sized applications. Its architecture makes the data generator easy to extend and to configure. A key feature is the high degree of parallelism that allows linear scaling for arbitrary numbers of nodes. We show how distributions, relationships and dependencies in data can be computed in parallel with linear speed up.

ID-Nummer: TUD-CS-2011-2935
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 31 Dez 2016 14:29
Letzte Änderung: 03 Jan 2019 14:18
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen