TU Darmstadt / ULB / TUbiblio

Geo-based Automatic Image Annotation

Sergieh, Hatem Mousselly ; Gianini, Gabriele ; Döller, Mario ; Kosch, Harald ; Egyed-Zsigmond, Elöd ; Pinon, Jean-Marie (2012)
Geo-based Automatic Image Annotation.
Hong Kong, China
doi: 10.1145/2324796.2324850
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

A huge number of user-tagged images are daily uploaded to the web. Recently, a growing number of those images are also geotagged. These provide new opportunities for solutions to automatically tag images so that efficient image management and retrieval can be achieved. In this paper an automatic image annotation approach is proposed. It is based on a statistical model that combines two different kinds of information: high level information represented by user tags of images captured in the same location as a new unlabeled image (input image); and low level information represented by the visual similarity between the input image and the collection of geographically similar images. To maximize the number of images that are visually similar to the input image, an iterative visual matching approach is proposed and evaluated. The results show that a significant recall improvement can be achieved with an increasing number of iterations. The quality of the recommended tags has also been evaluated and an overall good performance has been observed.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2012
Autor(en): Sergieh, Hatem Mousselly ; Gianini, Gabriele ; Döller, Mario ; Kosch, Harald ; Egyed-Zsigmond, Elöd ; Pinon, Jean-Marie
Art des Eintrags: Bibliographie
Titel: Geo-based Automatic Image Annotation
Sprache: Englisch
Publikationsjahr: 2012
Verlag: ACM
Buchtitel: Proceedings of the 2Nd ACM International Conference on Multimedia Retrieval
Reihe: ICMR '12
Veranstaltungsort: Hong Kong, China
DOI: 10.1145/2324796.2324850
URL / URN: https://dl.acm.org/citation.cfm?doid=2324796.2324850
Kurzbeschreibung (Abstract):

A huge number of user-tagged images are daily uploaded to the web. Recently, a growing number of those images are also geotagged. These provide new opportunities for solutions to automatically tag images so that efficient image management and retrieval can be achieved. In this paper an automatic image annotation approach is proposed. It is based on a statistical model that combines two different kinds of information: high level information represented by user tags of images captured in the same location as a new unlabeled image (input image); and low level information represented by the visual similarity between the input image and the collection of geographically similar images. To maximize the number of images that are visually similar to the input image, an iterative visual matching approach is proposed and evaluated. The results show that a significant recall improvement can be achieved with an increasing number of iterations. The quality of the recommended tags has also been evaluated and an overall good performance has been observed.

Freie Schlagworte: geotagging, image annotation, image retrieval, statistical models
ID-Nummer: TUD-CS-2012-0372
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 31 Dez 2016 14:29
Letzte Änderung: 21 Sep 2018 10:23
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen