TU Darmstadt / ULB / TUbiblio

Tag Relatedness Using Laplacian Score Feature Selection and Adapted Jensen-Shannon Divergence

Sergieh, Hatem Mousselly ; Döller, Mario ; Egyed-Zsigmond, Elöd ; Gianini, Gabriele ; Kosch, Harald ; Pinon, Jean-Marie (2014)
Tag Relatedness Using Laplacian Score Feature Selection and Adapted Jensen-Shannon Divergence.
Dublin, Ireland
doi: 10.1007/978-3-319-04114-8_14
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Folksonomies - networks of users, resources, and tags allow users to easily retrieve, organize and browse web contents. However, their advantages are still limited according to the noisiness of user provided tags. To overcome this problem, we propose an approach for identifying related tags in folksonomies. The approach uses tag co-occurrence statistics and Laplacian score feature selection to create probability distribution for each tag. Consequently, related tags are determined according to the distance between their distributions. In this regards, we propose a distance metric based on Jensen-Shannon Divergence. The new metric named AJSD deals with the noise in the measurements due to statistical fluctuations in tag co-occurrences. We experimentally evaluated our approach using WordNet and compared it to a common tag relatedness approach based on the cosine similarity. The results show the effectiveness of our approach and its advantage over the adversary method.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2014
Autor(en): Sergieh, Hatem Mousselly ; Döller, Mario ; Egyed-Zsigmond, Elöd ; Gianini, Gabriele ; Kosch, Harald ; Pinon, Jean-Marie
Art des Eintrags: Bibliographie
Titel: Tag Relatedness Using Laplacian Score Feature Selection and Adapted Jensen-Shannon Divergence
Sprache: Englisch
Publikationsjahr: 2014
Verlag: Springer International Publishing
Buchtitel: MultiMedia Modeling - 20th Anniversary International Conference, MMM 2014, Dublin, Ireland, January 6-10, 2014, Proceedings, Part I
Veranstaltungsort: Dublin, Ireland
DOI: 10.1007/978-3-319-04114-8_14
URL / URN: https://link.springer.com/chapter/10.1007%2F978-3-319-04114-...
Kurzbeschreibung (Abstract):

Folksonomies - networks of users, resources, and tags allow users to easily retrieve, organize and browse web contents. However, their advantages are still limited according to the noisiness of user provided tags. To overcome this problem, we propose an approach for identifying related tags in folksonomies. The approach uses tag co-occurrence statistics and Laplacian score feature selection to create probability distribution for each tag. Consequently, related tags are determined according to the distance between their distributions. In this regards, we propose a distance metric based on Jensen-Shannon Divergence. The new metric named AJSD deals with the noise in the measurements due to statistical fluctuations in tag co-occurrences. We experimentally evaluated our approach using WordNet and compared it to a common tag relatedness approach based on the cosine similarity. The results show the effectiveness of our approach and its advantage over the adversary method.

ID-Nummer: TUD-CS-2014-1075
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 31 Dez 2016 14:29
Letzte Änderung: 19 Sep 2018 15:01
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen