TU Darmstadt / ULB / TUbiblio

Folkioneer: Efficient Browsing of Community Geotagged Images on a Worldwide Scale

Mousselly-Sergieh, Hatem ; Watzinger, Daniel ; Huber, Bastian ; Döller, Mario ; Egyed-Zsigmond, Elöd ; Kosch, Harald (2014)
Folkioneer: Efficient Browsing of Community Geotagged Images on a Worldwide Scale.
Dublin, Ireland
doi: 10.1007/978-3-319-04117-9_36
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper, we introduce Folkioneer, a novel approach for browsing and exploring community-contributed geotagged images. Initially, images are clustered based on the embedded geographical information by applying an enhanced version of the CURE algorithm, and characteristic geodesic shapes are derived using Delaunay triangulation. Next, images of each geographical cluster are analyzed and grouped according to visual similarity using SURF and restricted homography estimation. At the same time, LDA is used to extract representative topics from the provided tags. Finally, the extracted information is visualized in an intuitive and user-friendly manner with the help of an interactive map.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2014
Autor(en): Mousselly-Sergieh, Hatem ; Watzinger, Daniel ; Huber, Bastian ; Döller, Mario ; Egyed-Zsigmond, Elöd ; Kosch, Harald
Art des Eintrags: Bibliographie
Titel: Folkioneer: Efficient Browsing of Community Geotagged Images on a Worldwide Scale
Sprache: Englisch
Publikationsjahr: 2014
Verlag: Springer International Publishing
Buchtitel: MultiMedia Modeling - 20th Anniversary International Conference, MMM 2014, Dublin, Ireland, January 6-10, 2014, Proceedings, Part II
Veranstaltungsort: Dublin, Ireland
DOI: 10.1007/978-3-319-04117-9_36
URL / URN: https://link.springer.com/chapter/10.1007%2F978-3-319-04117-...
Kurzbeschreibung (Abstract):

In this paper, we introduce Folkioneer, a novel approach for browsing and exploring community-contributed geotagged images. Initially, images are clustered based on the embedded geographical information by applying an enhanced version of the CURE algorithm, and characteristic geodesic shapes are derived using Delaunay triangulation. Next, images of each geographical cluster are analyzed and grouped according to visual similarity using SURF and restricted homography estimation. At the same time, LDA is used to extract representative topics from the provided tags. Finally, the extracted information is visualized in an intuitive and user-friendly manner with the help of an interactive map.

ID-Nummer: TUD-CS-2014-1074
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 31 Dez 2016 14:29
Letzte Änderung: 19 Sep 2018 14:18
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen