TU Darmstadt / ULB / TUbiblio

Tag relatedness in image folksonomies

Sergieh, Hatem Mousselly ; Egyed-Zsigmond, Elöd ; Gianini, Gabriele ; Döller, Mario ; Pinon, Jean-Marie ; Kosch, Harald (2014)
Tag relatedness in image folksonomies.
In: Document numérique, 17 (2)
doi: 10.3166/DN.17.2.33-54
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Folksonomies - networks of users, resources, and tags allow users to easily retrieve, organize and browse web contents. However, their advantages are still limited mainly due to the noisiness of user provided tags. To overcome this issue, we propose an approach for characterizing related tags in folksonomies: we use tag co-occurrence statistics and Laplacian score based feature selection in order to create empirical co-occurrence probability distribution for each tag; then we identify related tags on the basis of the dissimilarity between their distributions. For this purpose, we introduce variant of the Jensen-Shannon Divergence, which is more robust to statistical noise. We experimentally evaluate our approach using WordNet and compare it to a common tag-relatedness approach based on the cosine similarity. The results show the effectiveness of our approach and its advantage over the competing method.

Typ des Eintrags: Artikel
Erschienen: 2014
Autor(en): Sergieh, Hatem Mousselly ; Egyed-Zsigmond, Elöd ; Gianini, Gabriele ; Döller, Mario ; Pinon, Jean-Marie ; Kosch, Harald
Art des Eintrags: Bibliographie
Titel: Tag relatedness in image folksonomies
Sprache: Englisch
Publikationsjahr: Februar 2014
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Document numérique
Jahrgang/Volume einer Zeitschrift: 17
(Heft-)Nummer: 2
DOI: 10.3166/DN.17.2.33-54
URL / URN: https://dn.revuesonline.com/article.jsp?articleId=19707
Kurzbeschreibung (Abstract):

Folksonomies - networks of users, resources, and tags allow users to easily retrieve, organize and browse web contents. However, their advantages are still limited mainly due to the noisiness of user provided tags. To overcome this issue, we propose an approach for characterizing related tags in folksonomies: we use tag co-occurrence statistics and Laplacian score based feature selection in order to create empirical co-occurrence probability distribution for each tag; then we identify related tags on the basis of the dissimilarity between their distributions. For this purpose, we introduce variant of the Jensen-Shannon Divergence, which is more robust to statistical noise. We experimentally evaluate our approach using WordNet and compare it to a common tag-relatedness approach based on the cosine similarity. The results show the effectiveness of our approach and its advantage over the competing method.

ID-Nummer: TUD-CS-2014-1076
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 31 Dez 2016 14:29
Letzte Änderung: 19 Sep 2018 13:55
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen