Sergieh, Hatem Mousselly ; Egyed-Zsigmond, Elöd ; Gianini, Gabriele ; Döller, Mario ; Pinon, Jean-Marie ; Kosch, Harald (2014)
Tag relatedness in image folksonomies.
In: Document numérique, 17 (2)
doi: 10.3166/DN.17.2.33-54
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Folksonomies - networks of users, resources, and tags allow users to easily retrieve, organize and browse web contents. However, their advantages are still limited mainly due to the noisiness of user provided tags. To overcome this issue, we propose an approach for characterizing related tags in folksonomies: we use tag co-occurrence statistics and Laplacian score based feature selection in order to create empirical co-occurrence probability distribution for each tag; then we identify related tags on the basis of the dissimilarity between their distributions. For this purpose, we introduce variant of the Jensen-Shannon Divergence, which is more robust to statistical noise. We experimentally evaluate our approach using WordNet and compare it to a common tag-relatedness approach based on the cosine similarity. The results show the effectiveness of our approach and its advantage over the competing method.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2014 |
Autor(en): | Sergieh, Hatem Mousselly ; Egyed-Zsigmond, Elöd ; Gianini, Gabriele ; Döller, Mario ; Pinon, Jean-Marie ; Kosch, Harald |
Art des Eintrags: | Bibliographie |
Titel: | Tag relatedness in image folksonomies |
Sprache: | Englisch |
Publikationsjahr: | Februar 2014 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Document numérique |
Jahrgang/Volume einer Zeitschrift: | 17 |
(Heft-)Nummer: | 2 |
DOI: | 10.3166/DN.17.2.33-54 |
URL / URN: | https://dn.revuesonline.com/article.jsp?articleId=19707 |
Kurzbeschreibung (Abstract): | Folksonomies - networks of users, resources, and tags allow users to easily retrieve, organize and browse web contents. However, their advantages are still limited mainly due to the noisiness of user provided tags. To overcome this issue, we propose an approach for characterizing related tags in folksonomies: we use tag co-occurrence statistics and Laplacian score based feature selection in order to create empirical co-occurrence probability distribution for each tag; then we identify related tags on the basis of the dissimilarity between their distributions. For this purpose, we introduce variant of the Jensen-Shannon Divergence, which is more robust to statistical noise. We experimentally evaluate our approach using WordNet and compare it to a common tag-relatedness approach based on the cosine similarity. The results show the effectiveness of our approach and its advantage over the competing method. |
ID-Nummer: | TUD-CS-2014-1076 |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung |
Hinterlegungsdatum: | 31 Dez 2016 14:29 |
Letzte Änderung: | 19 Sep 2018 13:55 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |