TU Darmstadt / ULB / TUbiblio

Optimizing an Approximation of ROUGE - a Problem-Reduction Approach to Extractive Multi-Document Summarization

Peyrard, Maxime ; Eckle-Kohler, Judith (2016)
Optimizing an Approximation of ROUGE - a Problem-Reduction Approach to Extractive Multi-Document Summarization.
54th Annual Meeting of the Association for Computational Linguistics (ACL 2016). Berlin, Germany (07.08.2016-12.08.2016)
doi: 10.18653/v1/P16-1172
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

This paper presents a problem-reduction approach to extractive multi-document summarization: we propose a reduction to the problem of scoring individual sentences with their ROUGE scores based on supervised learning. For the summarization, we solve an optimization problem where the ROUGE score of the selected summary sentences is maximized. To this end, we derive an approximation of the ROUGE-N score of a set of sentences, and define a principled discrete optimization problem for sentence selection. Mathematical and empirical evidence suggests that the sentence selection step is solved almost exactly, thus reducing the problem to the sentence scoring task. We perform a detailed experimental evaluation on two DUC datasets to demonstrate the validity of our approach.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2016
Autor(en): Peyrard, Maxime ; Eckle-Kohler, Judith
Art des Eintrags: Bibliographie
Titel: Optimizing an Approximation of ROUGE - a Problem-Reduction Approach to Extractive Multi-Document Summarization
Sprache: Englisch
Publikationsjahr: August 2016
Ort: Berlin
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016)
Band einer Reihe: Volume 1: Long Papers
Veranstaltungstitel: 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016)
Veranstaltungsort: Berlin, Germany
Veranstaltungsdatum: 07.08.2016-12.08.2016
DOI: 10.18653/v1/P16-1172
URL / URN: http://www.aclweb.org/anthology/P16-1172
Zugehörige Links:
Kurzbeschreibung (Abstract):

This paper presents a problem-reduction approach to extractive multi-document summarization: we propose a reduction to the problem of scoring individual sentences with their ROUGE scores based on supervised learning. For the summarization, we solve an optimization problem where the ROUGE score of the selected summary sentences is maximized. To this end, we derive an approximation of the ROUGE-N score of a set of sentences, and define a principled discrete optimization problem for sentence selection. Mathematical and empirical evidence suggests that the sentence selection step is solved almost exactly, thus reducing the problem to the sentence scoring task. We perform a detailed experimental evaluation on two DUC datasets to demonstrate the validity of our approach.

Freie Schlagworte: UKP_reviewed;AIPHES_area_b2
ID-Nummer: TUD-CS-2016-0108
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 30 Dez 2016 17:45
Letzte Änderung: 02 Jul 2024 09:37
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen