TU Darmstadt / ULB / TUbiblio

Still not there? Comparing Traditional Sequence-to-Sequence Models to Encoder-Decoder Neural Networks on Monotone String Translation Tasks

Schnober, Carsten ; Eger, Steffen ; Do Dinh, Erik-Lân ; Gurevych, Iryna (2016)
Still not there? Comparing Traditional Sequence-to-Sequence Models to Encoder-Decoder Neural Networks on Monotone String Translation Tasks.
Osaka, Japan
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We analyze the performance of encoder-decoder neural models and compare them with well-known established methods. The latter represent different classes of traditional approaches that are applied to the monotone sequence-to-sequence tasks OCR post-correction, spelling correction, grapheme-to-phoneme conversion, and lemmatization. Such tasks are of practical relevance for various higher-level research fields including \textit{digital humanities}, automatic text correction, and speech recognition. We investigate how well generic deep-learning approaches adapt to these tasks, and how they perform in comparison with established and more specialized methods, including our own adaptation of pruned CRFs.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2016
Autor(en): Schnober, Carsten ; Eger, Steffen ; Do Dinh, Erik-Lân ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Still not there? Comparing Traditional Sequence-to-Sequence Models to Encoder-Decoder Neural Networks on Monotone String Translation Tasks
Sprache: Englisch
Publikationsjahr: Dezember 2016
Verlag: The COLING 2016 Organizing Committee
Buchtitel: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers
Veranstaltungsort: Osaka, Japan
URL / URN: http://aclweb.org/anthology/C16-1160
Kurzbeschreibung (Abstract):

We analyze the performance of encoder-decoder neural models and compare them with well-known established methods. The latter represent different classes of traditional approaches that are applied to the monotone sequence-to-sequence tasks OCR post-correction, spelling correction, grapheme-to-phoneme conversion, and lemmatization. Such tasks are of practical relevance for various higher-level research fields including \textit{digital humanities}, automatic text correction, and speech recognition. We investigate how well generic deep-learning approaches adapt to these tasks, and how they perform in comparison with established and more specialized methods, including our own adaptation of pruned CRFs.

Freie Schlagworte: UKP-DIPF;UKP_reviewed;UKP_a_DLinNLP
ID-Nummer: TUD-CS-2016-1450
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 31 Dez 2016 14:29
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen