Schnober, Carsten ; Eger, Steffen ; Do Dinh, Erik-Lân ; Gurevych, Iryna (2016)
Still not there? Comparing Traditional Sequence-to-Sequence Models to Encoder-Decoder Neural Networks on Monotone String Translation Tasks.
Osaka, Japan
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
We analyze the performance of encoder-decoder neural models and compare them with well-known established methods. The latter represent different classes of traditional approaches that are applied to the monotone sequence-to-sequence tasks OCR post-correction, spelling correction, grapheme-to-phoneme conversion, and lemmatization. Such tasks are of practical relevance for various higher-level research fields including \textit{digital humanities}, automatic text correction, and speech recognition. We investigate how well generic deep-learning approaches adapt to these tasks, and how they perform in comparison with established and more specialized methods, including our own adaptation of pruned CRFs.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2016 |
Autor(en): | Schnober, Carsten ; Eger, Steffen ; Do Dinh, Erik-Lân ; Gurevych, Iryna |
Art des Eintrags: | Bibliographie |
Titel: | Still not there? Comparing Traditional Sequence-to-Sequence Models to Encoder-Decoder Neural Networks on Monotone String Translation Tasks |
Sprache: | Englisch |
Publikationsjahr: | Dezember 2016 |
Verlag: | The COLING 2016 Organizing Committee |
Buchtitel: | Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers |
Veranstaltungsort: | Osaka, Japan |
URL / URN: | http://aclweb.org/anthology/C16-1160 |
Kurzbeschreibung (Abstract): | We analyze the performance of encoder-decoder neural models and compare them with well-known established methods. The latter represent different classes of traditional approaches that are applied to the monotone sequence-to-sequence tasks OCR post-correction, spelling correction, grapheme-to-phoneme conversion, and lemmatization. Such tasks are of practical relevance for various higher-level research fields including \textit{digital humanities}, automatic text correction, and speech recognition. We investigate how well generic deep-learning approaches adapt to these tasks, and how they perform in comparison with established and more specialized methods, including our own adaptation of pruned CRFs. |
Freie Schlagworte: | UKP-DIPF;UKP_reviewed;UKP_a_DLinNLP |
ID-Nummer: | TUD-CS-2016-1450 |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung |
Hinterlegungsdatum: | 31 Dez 2016 14:29 |
Letzte Änderung: | 24 Jan 2020 12:03 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |