TU Darmstadt / ULB / TUbiblio

Assessing SRL Frameworks with Automatic Training Data Expansion

Hartmann, Silvana ; Mújdricza-Maydt, Éva ; Kuznetsov, Ilia ; Gurevych, Iryna ; Frank, Anette (2017)
Assessing SRL Frameworks with Automatic Training Data Expansion.
Valencia, Spain
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We present the first experiment-based study that explicitly contrasts the three major semantic role labeling frameworks. As a prerequisite, we create a dataset labeled with parallel FrameNet-, PropBank-, and VerbNet-style labels for German. We train a state-of-the-art SRL tool for German for the different annotation styles and provide a comparative analysis across frameworks. We further explore the behavior of the frameworks with automatic training data generation. VerbNet provides larger semantic expressivity than PropBank, and we find that its generalization capacity approaches PropBank in SRL training, but it benefits less from training data expansion than the sparse-data affected FrameNet.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2017
Autor(en): Hartmann, Silvana ; Mújdricza-Maydt, Éva ; Kuznetsov, Ilia ; Gurevych, Iryna ; Frank, Anette
Art des Eintrags: Bibliographie
Titel: Assessing SRL Frameworks with Automatic Training Data Expansion
Sprache: Englisch
Publikationsjahr: April 2017
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 11th Linguistics Annotation Workshop (LAW XI) at EACL 2017
Veranstaltungsort: Valencia, Spain
URL / URN: https://aclweb.org/anthology/W/W17/W17-0814.pdf
Kurzbeschreibung (Abstract):

We present the first experiment-based study that explicitly contrasts the three major semantic role labeling frameworks. As a prerequisite, we create a dataset labeled with parallel FrameNet-, PropBank-, and VerbNet-style labels for German. We train a state-of-the-art SRL tool for German for the different annotation styles and provide a comparative analysis across frameworks. We further explore the behavior of the frameworks with automatic training data generation. VerbNet provides larger semantic expressivity than PropBank, and we find that its generalization capacity approaches PropBank in SRL training, but it benefits less from training data expansion than the sparse-data affected FrameNet.

Freie Schlagworte: UKP_reviewed;Natural Language Processing;UKP_p_QAEduInf;UKP_p_CLARIND
ID-Nummer: TUD-CS-2017-0045
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 23 Feb 2017 11:35
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen