TU Darmstadt / ULB / TUbiblio

Recognizing Insufficiently Supported Arguments in Argumentative Essays

Stab, Christian ; Gurevych, Iryna (2017)
Recognizing Insufficiently Supported Arguments in Argumentative Essays.
Valencia, Spain
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper, we propose a new task for assessing the quality of natural language arguments. The premises of a well-reasoned argument should provide enough evidence for accepting or rejecting its claim. Although this criterion, known as sufficiency, is widely adopted in argumentation theory, there are no empirical studies on its applicability to real arguments. In this work, we show that human annotators substantially agree on the sufficiency criterion and introduce a novel annotated corpus. Furthermore, we experiment with feature-rich SVMs and convolutional neural networks and achieve 84% accuracy for automatically identifying insufficiently supported arguments. The final corpus as well as the annotation guideline are freely available for encouraging future research on argument quality.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2017
Autor(en): Stab, Christian ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Recognizing Insufficiently Supported Arguments in Argumentative Essays
Sprache: Englisch
Publikationsjahr: April 2017
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2017)
Veranstaltungsort: Valencia, Spain
URL / URN: http://www.aclweb.org/anthology/E17-1092
Zugehörige Links:
Kurzbeschreibung (Abstract):

In this paper, we propose a new task for assessing the quality of natural language arguments. The premises of a well-reasoned argument should provide enough evidence for accepting or rejecting its claim. Although this criterion, known as sufficiency, is widely adopted in argumentation theory, there are no empirical studies on its applicability to real arguments. In this work, we show that human annotators substantially agree on the sufficiency criterion and introduce a novel annotated corpus. Furthermore, we experiment with feature-rich SVMs and convolutional neural networks and achieve 84% accuracy for automatically identifying insufficiently supported arguments. The final corpus as well as the annotation guideline are freely available for encouraging future research on argument quality.

Freie Schlagworte: UKP_reviewed;UKP_a_ArMin
ID-Nummer: TUD-CS-2017-0010
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 31 Dez 2016 14:29
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen