TU Darmstadt / ULB / TUbiblio

Prediction of Frame-to-Frame Relations in the FrameNet Hierarchy with Frame Embeddings

Botschen, Teresa ; Mousselly-Sergieh, Hatem ; Gurevych, Iryna (2017)
Prediction of Frame-to-Frame Relations in the FrameNet Hierarchy with Frame Embeddings.
Vancouver, Canada
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Automatic completion of frame-to-frame (F2F) relations in the FrameNet (FN) hierarchy has received little attention, although they incorporate meta-level commonsense knowledge and are used in downstream approaches. We address the problem of sparsely annotated F2F relations. First, we examine whether the manually defined F2F relations emerge from text by learning text-based frame embeddings. Our analysis reveals insights about the difficulty of reconstructing F2F relations purely from text. Second, we present different systems for predicting F2F relations; our best-performing one uses the FN hierarchy to train on and to ground embeddings in. A comparison of systems and embeddings exposes the crucial influence of knowledge-based embeddings to a system’s performance in predicting F2F relations.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2017
Autor(en): Botschen, Teresa ; Mousselly-Sergieh, Hatem ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Prediction of Frame-to-Frame Relations in the FrameNet Hierarchy with Frame Embeddings
Sprache: Englisch
Publikationsjahr: August 2017
Buchtitel: Proceedings of th 2nd Workshop on Representation Learning for NLP (RepL4NLP, held in conjunction with ACL 2017)
Veranstaltungsort: Vancouver, Canada
URL / URN: http://www.aclweb.org/anthology/W17-2618
Kurzbeschreibung (Abstract):

Automatic completion of frame-to-frame (F2F) relations in the FrameNet (FN) hierarchy has received little attention, although they incorporate meta-level commonsense knowledge and are used in downstream approaches. We address the problem of sparsely annotated F2F relations. First, we examine whether the manually defined F2F relations emerge from text by learning text-based frame embeddings. Our analysis reveals insights about the difficulty of reconstructing F2F relations purely from text. Second, we present different systems for predicting F2F relations; our best-performing one uses the FN hierarchy to train on and to ground embeddings in. A comparison of systems and embeddings exposes the crucial influence of knowledge-based embeddings to a system’s performance in predicting F2F relations.

Freie Schlagworte: reviewed;UKP_reviewed;AIPHES_area_c3
ID-Nummer: TUD-CS-2017-0123
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 31 Mai 2017 14:55
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen