TU Darmstadt / ULB / TUbiblio

Experimental study of multimodal representations for Frame Identification - How to find the right multimodal representations for this task?

Botschen, Teresa ; Mousselly-Sergieh, Hatem ; Gurevych, Iryna (2017)
Experimental study of multimodal representations for Frame Identification - How to find the right multimodal representations for this task?
London, UK
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Frame Identification (FrameId) is the first step in FrameNet Semantic Role Labeling where the correct frame is assigned to the predicate of a sentence. An automatic FrameId system takes the sentence and the predicate as input and predicts the correct frame. Current state-of-the-art FrameId systems are based on pretrained distributed word representations. For a wide range of tasks multimodal approaches are reported to be superior to unimodal approaches when textual embeddings are enriched with information from other modalities, for instance images. Regarding the task of FrameId, to the best of our knowledge, multimodal approaches have not yet been investigated and we think it deserves investigation due to the success of pretrained multimodal representations as input representations for other tasks. We want to find out whether representations that are grounded in images can help to improve the performance of our FrameId system. We report about our preliminary investigations with pretrained multimodal embeddings for FrameId.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2017
Autor(en): Botschen, Teresa ; Mousselly-Sergieh, Hatem ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Experimental study of multimodal representations for Frame Identification - How to find the right multimodal representations for this task?
Sprache: Englisch
Publikationsjahr: September 2017
Buchtitel: Language-Learning-Logic Workshop (3L 2017)
Veranstaltungsort: London, UK
Kurzbeschreibung (Abstract):

Frame Identification (FrameId) is the first step in FrameNet Semantic Role Labeling where the correct frame is assigned to the predicate of a sentence. An automatic FrameId system takes the sentence and the predicate as input and predicts the correct frame. Current state-of-the-art FrameId systems are based on pretrained distributed word representations. For a wide range of tasks multimodal approaches are reported to be superior to unimodal approaches when textual embeddings are enriched with information from other modalities, for instance images. Regarding the task of FrameId, to the best of our knowledge, multimodal approaches have not yet been investigated and we think it deserves investigation due to the success of pretrained multimodal representations as input representations for other tasks. We want to find out whether representations that are grounded in images can help to improve the performance of our FrameId system. We report about our preliminary investigations with pretrained multimodal embeddings for FrameId.

Freie Schlagworte: AIPHES_area_c3
ID-Nummer: TUD-CS-2017-0246
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 14 Sep 2017 07:56
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen