TU Darmstadt / ULB / TUbiblio

Cross-topic Argument Mining from Heterogeneous Sources

Stab, Christian ; Miller, Tristan ; Schiller, Benjamin ; Rai, Pranav ; Gurevych, Iryna (2018)
Cross-topic Argument Mining from Heterogeneous Sources.
The 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium (31.10.2018-04.11.2018)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Argument mining is a core technology for automating argument search in large document collections. Despite its usefulness for this task, most current approaches are designed for use only with specific text types and fall short when applied to heterogeneous texts. In this paper, we propose a new sentential annotation scheme that is reliably applicable by crowd workers to arbitrary Web texts. We source annotations for over 25,000 instances covering eight controversial topics. We show that integrating topic information into bidirectional long short-term memory networks outperforms vanilla BiLSTMs by more than 3 percentage points in F1 in two- and three-label cross-topic settings. We also show that these results can be further improved by leveraging additional data for topic relevance using multi-task learning.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2018
Autor(en): Stab, Christian ; Miller, Tristan ; Schiller, Benjamin ; Rai, Pranav ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Cross-topic Argument Mining from Heterogeneous Sources
Sprache: Englisch
Publikationsjahr: 4 November 2018
Buchtitel: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
Band einer Reihe: Long Papers
Veranstaltungstitel: The 2018 Conference on Empirical Methods in Natural Language Processing
Veranstaltungsort: Brussels, Belgium
Veranstaltungsdatum: 31.10.2018-04.11.2018
URL / URN: http://aclweb.org/anthology/D18-1402
Zugehörige Links:
Kurzbeschreibung (Abstract):

Argument mining is a core technology for automating argument search in large document collections. Despite its usefulness for this task, most current approaches are designed for use only with specific text types and fall short when applied to heterogeneous texts. In this paper, we propose a new sentential annotation scheme that is reliably applicable by crowd workers to arbitrary Web texts. We source annotations for over 25,000 instances covering eight controversial topics. We show that integrating topic information into bidirectional long short-term memory networks outperforms vanilla BiLSTMs by more than 3 percentage points in F1 in two- and three-label cross-topic settings. We also show that these results can be further improved by leveraging additional data for topic relevance using multi-task learning.

Freie Schlagworte: UKP_p_ArgumenText, UKP_a_ArMin
ID-Nummer: TUD-CS-2018-0052
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 08 Mär 2018 15:30
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Projekte: ArgumenText
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen