TU Darmstadt / ULB / TUbiblio

An ideal amplitude window against electric fatigue in BaTiO3-based lead-free piezoelectric materials

Fan, Zhongming ; Koruza, Jurij ; Rödel, Jürgen ; Tan, Xiaoli (2018)
An ideal amplitude window against electric fatigue in BaTiO3-based lead-free piezoelectric materials.
In: Acta Materialia, 151
doi: 10.1016/j.actamat.2018.03.067
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Electric fatigue has been a vexing issue for Pb(Zr,Ti)O3 ceramics, the material-of-choice for piezoelectric technologies, where higher field amplitudes always lead to a more severe property degradation. Thus, piezoelectric devices must be driven under low electric fields to ensure performance reliability, which results in a low efficiency. In the past decade, the intensive worldwide research on lead-free compositions has identified a few ceramics with piezoelectric properties comparable to those of lead-containing ones. However, their resistance to electric fatigue has not been well studied. In this work, we report an abnormal amplitude dependence of electric fatigue in lead-free piezoelectrics: A BaTiO3-based ceramic suffers fatigue degradation when the field amplitude is low, but exhibits an amplitude window at higher fields with essentially no fatigue. Furthermore, electric-field in-situ transmission electron microscopy (TEM) experiments up to 105 cycles are conducted to clearly reveal that the degradation at low fields is due to the unique single-domain state. We, therefore, have identified an ideal amplitude window with performance at full potential and, at the same time, extremely high reliability for a lead-free piezoelectric ceramic that is promising to replace Pb(Zr,Ti)O3.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Fan, Zhongming ; Koruza, Jurij ; Rödel, Jürgen ; Tan, Xiaoli
Art des Eintrags: Bibliographie
Titel: An ideal amplitude window against electric fatigue in BaTiO3-based lead-free piezoelectric materials
Sprache: Englisch
Publikationsjahr: 13 April 2018
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Acta Materialia
Jahrgang/Volume einer Zeitschrift: 151
DOI: 10.1016/j.actamat.2018.03.067
Kurzbeschreibung (Abstract):

Electric fatigue has been a vexing issue for Pb(Zr,Ti)O3 ceramics, the material-of-choice for piezoelectric technologies, where higher field amplitudes always lead to a more severe property degradation. Thus, piezoelectric devices must be driven under low electric fields to ensure performance reliability, which results in a low efficiency. In the past decade, the intensive worldwide research on lead-free compositions has identified a few ceramics with piezoelectric properties comparable to those of lead-containing ones. However, their resistance to electric fatigue has not been well studied. In this work, we report an abnormal amplitude dependence of electric fatigue in lead-free piezoelectrics: A BaTiO3-based ceramic suffers fatigue degradation when the field amplitude is low, but exhibits an amplitude window at higher fields with essentially no fatigue. Furthermore, electric-field in-situ transmission electron microscopy (TEM) experiments up to 105 cycles are conducted to clearly reveal that the degradation at low fields is due to the unique single-domain state. We, therefore, have identified an ideal amplitude window with performance at full potential and, at the same time, extremely high reliability for a lead-free piezoelectric ceramic that is promising to replace Pb(Zr,Ti)O3.

Freie Schlagworte: Ferroelectric Fatigue In-situ transmission electron microscopy (TEM) Single-domain
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 13 Apr 2018 06:26
Letzte Änderung: 13 Apr 2018 06:26
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen