Leonard, Mark R. ; Schroth, Christian A. ; Zoubir, Abdelhak M. (2018)
Dempster-Shafer Theory Based Robust Sequential Detection in Distributed Sensor Networks.
IEEE Statistical Signal Processing Workshop (SSP 2018). Freiburg im Breisgau, Germany (10.06.2018-13.06.2018)
doi: 10.1109/SSP.2018.8450760
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
We propose a distributed sequential detector based on the Dempster-Shafer Theory of Evidence. First, we introduce a novel rule for the basic probability assignment. This rule is based on the distribution of the likelihood ratio and is shown to yield better results than existing ones while at the same time avoiding counter-intuitive and contradictory probability assignments. Second, we use the Dempster-Shafer combination rule to design a distributed sequential detection algorithm. Third, we show how to robustify the algorithm against outliers by leveraging neighborhood communication.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2018 |
Autor(en): | Leonard, Mark R. ; Schroth, Christian A. ; Zoubir, Abdelhak M. |
Art des Eintrags: | Bibliographie |
Titel: | Dempster-Shafer Theory Based Robust Sequential Detection in Distributed Sensor Networks |
Sprache: | Englisch |
Publikationsjahr: | 30 August 2018 |
Verlag: | IEEE |
Buchtitel: | 2018 IEEE Statistical Signal Processing Workshop |
Veranstaltungstitel: | IEEE Statistical Signal Processing Workshop (SSP 2018) |
Veranstaltungsort: | Freiburg im Breisgau, Germany |
Veranstaltungsdatum: | 10.06.2018-13.06.2018 |
DOI: | 10.1109/SSP.2018.8450760 |
Kurzbeschreibung (Abstract): | We propose a distributed sequential detector based on the Dempster-Shafer Theory of Evidence. First, we introduce a novel rule for the basic probability assignment. This rule is based on the distribution of the likelihood ratio and is shown to yield better results than existing ones while at the same time avoiding counter-intuitive and contradictory probability assignments. Second, we use the Dempster-Shafer combination rule to design a distributed sequential detection algorithm. Third, we show how to robustify the algorithm against outliers by leveraging neighborhood communication. |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung |
Hinterlegungsdatum: | 04 Apr 2018 20:24 |
Letzte Änderung: | 27 Feb 2023 11:46 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |