TU Darmstadt / ULB / TUbiblio

Binary desorption isotherms of TCE and PCE from silica gel and natural solids

Schaefer, Charles E. ; Schüth, Christoph ; Werth, Charles J. ; Reinhard, Martin (2000)
Binary desorption isotherms of TCE and PCE from silica gel and natural solids.
In: Environmental Science and Technology, 34 (20)
doi: 10.1021/es000875d
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Binary solute desorption isotherms of trichloroethylene (TCE) and tetrachloroethylene (PCE) at 100% relative humidity from silica gel and two well-characterized natural solids were investigated. Results indicated that the ideal adsorbed solution theory (IAST) was able to describe desorption isotherms for the silica gel. For the natural solids, IAST was not able to describe desorption isotherms for the full concentration range examined. Failure of lAST was greatest for the most heterogeneous sorbent, even when considering multiple sorption domains. In addition, IAST predictions worsened as nonlinear uptake mechanisms began to dominate. Several possible explanations for the failure of the IAST are given, including the possibility that complex interactions between the sorbing solutes and the sorbent may exist, causing deviations from ideal sorption behavior. Binary solute desorption isotherms of trichloroethylene (TCE) and tetrachloroethylene (PCE) at 100% relative humidity from silica gel and two well-characterized natural solids were investigated. Results indicated that the ideal adsorbed solution theory (IAST) was able to describe desorption isotherms for the silica gel. For the natural solids, IAST was not able to describe desorption isotherms for the full concentration range examined. Failure of IAST was greatest for the most heterogeneous sorbent, even when considering multiple sorption domains. In addition, IAST predictions worsened as nonlinear uptake mechanisms began to dominate. Several possible explanations for the failure of the IAST are given, including the possibility that complex interactions between the sorbing solutes and the sorbent may exist, causing deviations from ideal sorption behavior.

Typ des Eintrags: Artikel
Erschienen: 2000
Autor(en): Schaefer, Charles E. ; Schüth, Christoph ; Werth, Charles J. ; Reinhard, Martin
Art des Eintrags: Bibliographie
Titel: Binary desorption isotherms of TCE and PCE from silica gel and natural solids
Sprache: Englisch
Publikationsjahr: 2000
Verlag: American Chemical Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Environmental Science and Technology
Jahrgang/Volume einer Zeitschrift: 34
(Heft-)Nummer: 20
DOI: 10.1021/es000875d
URL / URN: https://pubs.acs.org/doi/abs/10.1021/es000875d
Kurzbeschreibung (Abstract):

Binary solute desorption isotherms of trichloroethylene (TCE) and tetrachloroethylene (PCE) at 100% relative humidity from silica gel and two well-characterized natural solids were investigated. Results indicated that the ideal adsorbed solution theory (IAST) was able to describe desorption isotherms for the silica gel. For the natural solids, IAST was not able to describe desorption isotherms for the full concentration range examined. Failure of lAST was greatest for the most heterogeneous sorbent, even when considering multiple sorption domains. In addition, IAST predictions worsened as nonlinear uptake mechanisms began to dominate. Several possible explanations for the failure of the IAST are given, including the possibility that complex interactions between the sorbing solutes and the sorbent may exist, causing deviations from ideal sorption behavior. Binary solute desorption isotherms of trichloroethylene (TCE) and tetrachloroethylene (PCE) at 100% relative humidity from silica gel and two well-characterized natural solids were investigated. Results indicated that the ideal adsorbed solution theory (IAST) was able to describe desorption isotherms for the silica gel. For the natural solids, IAST was not able to describe desorption isotherms for the full concentration range examined. Failure of IAST was greatest for the most heterogeneous sorbent, even when considering multiple sorption domains. In addition, IAST predictions worsened as nonlinear uptake mechanisms began to dominate. Several possible explanations for the failure of the IAST are given, including the possibility that complex interactions between the sorbing solutes and the sorbent may exist, causing deviations from ideal sorption behavior.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Hydrogeologie
Hinterlegungsdatum: 17 Apr 2018 12:03
Letzte Änderung: 23 Jan 2019 08:47
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen