Alber, Hans-Dieter ; Broese, Carsten ; Tsakmakis, Charalampos ; Beskos, Dimitri (2018)
Non-Conventional Thermodynamics and Models of Gradient Elasticity.
In: Entropy, 2018, 20 (3)
doi: 10.3390/e20030179
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
We consider material bodies exhibiting a response function for free energy, which depends on both the strain and its gradient. Toupin–Mindlin’s gradient elasticity is characterized by Cauchy stress tensors, which are given by space-like Euler–Lagrange derivative of the free energy with respect to the strain. The present paper aims at developing a first version of gradient elasticity of non-Toupin–Mindlin’s type, i.e., a theory employing Cauchy stress tensors, which are not necessarily expressed as Euler–Lagrange derivatives. This is accomplished in the framework of non-conventional thermodynamics. A one-dimensional boundary value problem is solved in detail in order to illustrate the differences of the present theory with Toupin–Mindlin’s gradient elasticity theory.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2018 |
Autor(en): | Alber, Hans-Dieter ; Broese, Carsten ; Tsakmakis, Charalampos ; Beskos, Dimitri |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Non-Conventional Thermodynamics and Models of Gradient Elasticity |
Sprache: | Englisch |
Publikationsjahr: | 2018 |
Publikationsdatum der Erstveröffentlichung: | 2018 |
Verlag: | MDPI |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Entropy |
Jahrgang/Volume einer Zeitschrift: | 20 |
(Heft-)Nummer: | 3 |
DOI: | 10.3390/e20030179 |
URL / URN: | https://doi.org/10.3390/e20030179 |
Herkunft: | Zweitveröffentlichung aus gefördertem Golden Open Access |
Kurzbeschreibung (Abstract): | We consider material bodies exhibiting a response function for free energy, which depends on both the strain and its gradient. Toupin–Mindlin’s gradient elasticity is characterized by Cauchy stress tensors, which are given by space-like Euler–Lagrange derivative of the free energy with respect to the strain. The present paper aims at developing a first version of gradient elasticity of non-Toupin–Mindlin’s type, i.e., a theory employing Cauchy stress tensors, which are not necessarily expressed as Euler–Lagrange derivatives. This is accomplished in the framework of non-conventional thermodynamics. A one-dimensional boundary value problem is solved in detail in order to illustrate the differences of the present theory with Toupin–Mindlin’s gradient elasticity theory. |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-72954 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik |
Fachbereich(e)/-gebiet(e): | 13 Fachbereich Bau- und Umweltingenieurwissenschaften 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik |
Hinterlegungsdatum: | 18 Mär 2018 20:55 |
Letzte Änderung: | 02 Aug 2024 12:33 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Non-Conventional Thermodynamics and Models of Gradient Elasticity. (deposited 18 Mär 2018 20:55) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |