TU Darmstadt / ULB / TUbiblio

Anisotropic local hardening in hot-deformed Nd-Fe-B permanent magnets

Sawatzki, Simon ; Schneider, Thorsten ; Yi, Min ; Bruder, Enrico ; Ener, Semih ; Schönfeldt, Mario ; Güth, Konrad ; Xu, Bai-Xiang ; Gutfleisch, Oliver (2018)
Anisotropic local hardening in hot-deformed Nd-Fe-B permanent magnets.
In: Acta Materialia, 147
doi: 10.1016/j.actamat.2017.12.059
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The diffusion of low-melting Nd-Cu alloys is very effective to increase coercivity in hot-deformed Nd-Fe-B permanent magnets without the use of heavy rare earth and to study the local hardening mechanism, especially the role of the Nd-rich grain boundary on the magnetic decoupling of the Nd-Fe-B grains on the nanoscale. In this study, we found that for a Nd-Cu diffusion parallel to the texture axis the increase in is higher than for a diffusion perpendicular to it and strongly depends on the diffusion depth whereas remanence develops in an inverse manner. We note the following three observations to explain This behavior results from: a) a higher overall Nd and Cu concentration for the parallel diffusion revealed by global energy dispersive X-ray (EDX) maps leading to a distinct change in the broadness of the interaction domains visualized by Kerr microscopy, b) a higher degree of misalignment of the Nd2Fe14B grains observed by electron backscattered diffraction (EBSD), and c) a more effective local hardening on the macroscopic scale governed by dipolar and exchange interactions as modeled by micromagnetic simulations. The misalignment and the incorporation of Nd and Cu also lead to a volume expansion of the magnet of around 0.6–0.8% as proven by in-situ thermo-optical measurements (TOM).

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Sawatzki, Simon ; Schneider, Thorsten ; Yi, Min ; Bruder, Enrico ; Ener, Semih ; Schönfeldt, Mario ; Güth, Konrad ; Xu, Bai-Xiang ; Gutfleisch, Oliver
Art des Eintrags: Bibliographie
Titel: Anisotropic local hardening in hot-deformed Nd-Fe-B permanent magnets
Sprache: Englisch
Publikationsjahr: 1 April 2018
Verlag: Elsevier Sciene Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Acta Materialia
Jahrgang/Volume einer Zeitschrift: 147
DOI: 10.1016/j.actamat.2017.12.059
URL / URN: https://doi.org/10.1016/j.actamat.2017.12.059
Kurzbeschreibung (Abstract):

The diffusion of low-melting Nd-Cu alloys is very effective to increase coercivity in hot-deformed Nd-Fe-B permanent magnets without the use of heavy rare earth and to study the local hardening mechanism, especially the role of the Nd-rich grain boundary on the magnetic decoupling of the Nd-Fe-B grains on the nanoscale. In this study, we found that for a Nd-Cu diffusion parallel to the texture axis the increase in is higher than for a diffusion perpendicular to it and strongly depends on the diffusion depth whereas remanence develops in an inverse manner. We note the following three observations to explain This behavior results from: a) a higher overall Nd and Cu concentration for the parallel diffusion revealed by global energy dispersive X-ray (EDX) maps leading to a distinct change in the broadness of the interaction domains visualized by Kerr microscopy, b) a higher degree of misalignment of the Nd2Fe14B grains observed by electron backscattered diffraction (EBSD), and c) a more effective local hardening on the macroscopic scale governed by dipolar and exchange interactions as modeled by micromagnetic simulations. The misalignment and the incorporation of Nd and Cu also lead to a volume expansion of the magnet of around 0.6–0.8% as proven by in-situ thermo-optical measurements (TOM).

Freie Schlagworte: permanent magnet, Nd-Fe-B, Hot-deformation, Grain boundary diffusion process (GBDP), Low melting eutectic
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physikalische Metallkunde
Hinterlegungsdatum: 12 Mär 2018 10:10
Letzte Änderung: 26 Jan 2024 09:21
PPN:
Sponsoren: We thank Juliane Thielsch for experimental advice on the Kerr-microscopy and the German federal state of Hessen through its excellence program LOEWE ”RESPONSE” for financial support., The authors also greatly acknowledge the access to the Lichtenberg High Performance Computer of TU Darmstadt.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen