TU Darmstadt / ULB / TUbiblio

A simple recipe for setting up the flux equations of cyclic and linear reaction schemes of ion transport with a high number of states: The arrow scheme

Hansen, Ulf-Peter ; Rauh, Oliver ; Schroeder, Indra (2016)
A simple recipe for setting up the flux equations of cyclic and linear reaction schemes of ion transport with a high number of states: The arrow scheme.
In: Channels, 10 (2)
doi: 10.1080/19336950.2015.1120391
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The calculation of flux equations or current-voltage relationships in reaction kinetic models with a high number of states can be very cumbersome. Here, a recipe based on an arrow scheme is presented, which yields a straightforward access to the minimum form of the flux equations and the occupation probability of the involved states in cyclic and linear reaction schemes. This is extremely simple for cyclic schemes without branches. If branches are involved, the effort of setting up the equations is a little bit higher. However, also here a straightforward recipe making use of so-called reserve factors is provided for implementing the branches into the cyclic scheme, thus enabling also a simple treatment of such cases.

Typ des Eintrags: Artikel
Erschienen: 2016
Autor(en): Hansen, Ulf-Peter ; Rauh, Oliver ; Schroeder, Indra
Art des Eintrags: Bibliographie
Titel: A simple recipe for setting up the flux equations of cyclic and linear reaction schemes of ion transport with a high number of states: The arrow scheme
Sprache: Englisch
Publikationsjahr: 2016
Verlag: Taylor & Francis
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Channels
Jahrgang/Volume einer Zeitschrift: 10
(Heft-)Nummer: 2
DOI: 10.1080/19336950.2015.1120391
URL / URN: https://doi.org/10.1080/19336950.2015.1120391
Kurzbeschreibung (Abstract):

The calculation of flux equations or current-voltage relationships in reaction kinetic models with a high number of states can be very cumbersome. Here, a recipe based on an arrow scheme is presented, which yields a straightforward access to the minimum form of the flux equations and the occupation probability of the involved states in cyclic and linear reaction schemes. This is extremely simple for cyclic schemes without branches. If branches are involved, the effort of setting up the equations is a little bit higher. However, also here a straightforward recipe making use of so-called reserve factors is provided for implementing the branches into the cyclic scheme, thus enabling also a simple treatment of such cases.

Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie > Plant Membrane Biophyscis (am 20.12.23 umbenannt in Biologie der Algen und Protozoen)
10 Fachbereich Biologie
Hinterlegungsdatum: 23 Feb 2018 07:53
Letzte Änderung: 23 Feb 2018 07:53
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen