TU Darmstadt / ULB / TUbiblio

Methods for Efficient Sampling of Arbitrary Distributed Volume Densities

Haas, Stefan ; Sakas, Georgios (1990)
Methods for Efficient Sampling of Arbitrary Distributed Volume Densities.
Eurographics Workshop on Photosimulation, Realism and Physics in Computer Graphics. Proceedings.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In recent years a number of techniques have been developed for rendering volume effects (haze, fog, smoke, clouds, etc.). Such techniques have been implemented for projective scanline renderers, ray-tracers and for radiosity. Roughly speaking, such a method depends on an illumination model which accounts for the light-material interaction, together with a sampling strategy for reading the data of the density field. The illumination models proposed in the literature are quite complicated and require several time-consuming operations, such as exponential functions, roots and trigonometrical functions. Ray-tracing and radiosity evaluate the illumination model at every voxel of the density field. Since several hundred complicated calculations are necessary for each ray, such a rigorous evaluation is very time-consuming. On the other hand, methods proposed for scanline renderes do not account for arbitrary density distributions: The equations describing scattering and reflection of light have been analytically solved along each ray within a volume. The purpose of this paper is not to propose a new illumination model, but to compare several methods for efficiently sampling arbitrary distributed data. We propose that several sampling strategies can be used to reduce the number of evaluations of the illumination calculations along a ray and, thus, reduce the rendering time needed. Such a method is well suited for scanline renderers but can be used with ray-tracers. We propose a Monte-Carlo method and an approximative method with user-adjustable accuracy to sample the volume data. Thus, a trade-off between computing time, sampling accuracy and picture quality exists.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 1990
Autor(en): Haas, Stefan ; Sakas, Georgios
Art des Eintrags: Bibliographie
Titel: Methods for Efficient Sampling of Arbitrary Distributed Volume Densities
Sprache: Englisch
Publikationsjahr: 1990
Veranstaltungstitel: Eurographics Workshop on Photosimulation, Realism and Physics in Computer Graphics. Proceedings
Kurzbeschreibung (Abstract):

In recent years a number of techniques have been developed for rendering volume effects (haze, fog, smoke, clouds, etc.). Such techniques have been implemented for projective scanline renderers, ray-tracers and for radiosity. Roughly speaking, such a method depends on an illumination model which accounts for the light-material interaction, together with a sampling strategy for reading the data of the density field. The illumination models proposed in the literature are quite complicated and require several time-consuming operations, such as exponential functions, roots and trigonometrical functions. Ray-tracing and radiosity evaluate the illumination model at every voxel of the density field. Since several hundred complicated calculations are necessary for each ray, such a rigorous evaluation is very time-consuming. On the other hand, methods proposed for scanline renderes do not account for arbitrary density distributions: The equations describing scattering and reflection of light have been analytically solved along each ray within a volume. The purpose of this paper is not to propose a new illumination model, but to compare several methods for efficiently sampling arbitrary distributed data. We propose that several sampling strategies can be used to reduce the number of evaluations of the illumination calculations along a ray and, thus, reduce the rendering time needed. Such a method is well suited for scanline renderers but can be used with ray-tracers. We propose a Monte-Carlo method and an approximative method with user-adjustable accuracy to sample the volume data. Thus, a trade-off between computing time, sampling accuracy and picture quality exists.

Freie Schlagworte: Monte Carlo techniques, Rendering, Sampling, Solid texturing, Volume densities
Fachbereich(e)/-gebiet(e): nicht bekannt
20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 16 Apr 2018 09:10
Letzte Änderung: 16 Apr 2018 09:10
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen