TU Darmstadt / ULB / TUbiblio

Linear Combinations of Transformations

Alexa, Marc (2002)
Linear Combinations of Transformations.
In: ACM Transactions on Graphics, 21 (3)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Geometric transformations are most commonly represented as square matrices in computer graphics. Following simple geometric arguments we derive a natural and geometrically meaningful definition of scalar multiples and a commutative addition of transformations based on the matrix representation, given that the matrices have no negative real eigenvalues. Together, these operations allow the linear combination of transformations. This provides the ability to create weighted combination of transformations, interpolate between transformations, and to construct or use arbitrary transformations in a structure similar to a basis of a vector space. These basic techniques are useful for synthesis and analysis of motions or animations. Animations through a set of key transformations are generated using standard techniques such as subdivision curves. For analysis and progressive compression a PCA can be applied to sequences of transformations. We describe an implementation of the techniques that enables an easy-to-use and transparent way of dealing with geometric transformations in graphics software. We compare and relate our approach to other techniques such as matrix decomposition and quaternion interpolation.

Typ des Eintrags: Artikel
Erschienen: 2002
Autor(en): Alexa, Marc
Art des Eintrags: Bibliographie
Titel: Linear Combinations of Transformations
Sprache: Englisch
Publikationsjahr: 2002
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ACM Transactions on Graphics
Jahrgang/Volume einer Zeitschrift: 21
(Heft-)Nummer: 3
Kurzbeschreibung (Abstract):

Geometric transformations are most commonly represented as square matrices in computer graphics. Following simple geometric arguments we derive a natural and geometrically meaningful definition of scalar multiples and a commutative addition of transformations based on the matrix representation, given that the matrices have no negative real eigenvalues. Together, these operations allow the linear combination of transformations. This provides the ability to create weighted combination of transformations, interpolate between transformations, and to construct or use arbitrary transformations in a structure similar to a basis of a vector space. These basic techniques are useful for synthesis and analysis of motions or animations. Animations through a set of key transformations are generated using standard techniques such as subdivision curves. For analysis and progressive compression a PCA can be applied to sequences of transformations. We describe an implementation of the techniques that enables an easy-to-use and transparent way of dealing with geometric transformations in graphics software. We compare and relate our approach to other techniques such as matrix decomposition and quaternion interpolation.

Freie Schlagworte: Transformations, Linear spaces, Exponential map, Matrix
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 16 Apr 2018 09:05
Letzte Änderung: 16 Apr 2018 09:05
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen