TU Darmstadt / ULB / TUbiblio

Visual Component Analysis

Müller, Wolfgang ; Alexa, Marc (2004)
Visual Component Analysis.
VisSym 2004. Symposium on Visualization.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We propose to integrate information visualization techniques with factor analysis. Specifically, a principal direction derived from a principal component analysis (PCA) of the data is displayed together with the data in a scatterplot matrix. The direction can be adjusted to coincide with visual trends in the data. Projecting the data onto the orthogonal subspace allows determining the next direction. The set of directions identified in this way forms an orthogonal space, which represents most of the variation in the data. We call this process visual component analysis (VCA). Furthermore, it is quite simple to integrate VCA with clustering. The user fits poly-lines to the displayed data, and the poly-lines implicitly define clusters. Per-cluster projection leads to the definition of per-cluster components.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2004
Autor(en): Müller, Wolfgang ; Alexa, Marc
Art des Eintrags: Bibliographie
Titel: Visual Component Analysis
Sprache: Deutsch
Publikationsjahr: 2004
Verlag: The Eurographics Association, Aire-la-Ville
Veranstaltungstitel: VisSym 2004. Symposium on Visualization
Kurzbeschreibung (Abstract):

We propose to integrate information visualization techniques with factor analysis. Specifically, a principal direction derived from a principal component analysis (PCA) of the data is displayed together with the data in a scatterplot matrix. The direction can be adjusted to coincide with visual trends in the data. Projecting the data onto the orthogonal subspace allows determining the next direction. The set of directions identified in this way forms an orthogonal space, which represents most of the variation in the data. We call this process visual component analysis (VCA). Furthermore, it is quite simple to integrate VCA with clustering. The user fits poly-lines to the displayed data, and the poly-lines implicitly define clusters. Per-cluster projection leads to the definition of per-cluster components.

Freie Schlagworte: Visual data mining, Information visualization
Fachbereich(e)/-gebiet(e): nicht bekannt
20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 16 Apr 2018 09:04
Letzte Änderung: 16 Apr 2018 09:04
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen