TU Darmstadt / ULB / TUbiblio

Optimal Statistical Model for Forecasting Air Quality Data

Abdollahian, Mali ; Foroughi, Roya (2004)
Optimal Statistical Model for Forecasting Air Quality Data.
International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences (METMBS '04). Las Vegas, USA (21.06.2004-24.06.2004)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The objective of this paper is to apply time series analysis and regression methods to air quality data in order to obtain the optimal statistical model for forecasting. The best estimated model is then used to produce one-step ahead point and interval estimates of future values of the Airborne Particles Index (API) series. API data is analysed using time series analysis, which resulted in an ARMA (2,3) with MAPE = 62. Regression analysis of this data, using temperature, wind speed and today's API, as explanatory variables, results in MAPE=42, which is substantially less than the previous model.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2004
Autor(en): Abdollahian, Mali ; Foroughi, Roya
Art des Eintrags: Bibliographie
Titel: Optimal Statistical Model for Forecasting Air Quality Data
Sprache: Englisch
Publikationsjahr: 2004
Verlag: CSREA Press
Buchtitel: Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Scienes
Veranstaltungstitel: International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences (METMBS '04)
Veranstaltungsort: Las Vegas, USA
Veranstaltungsdatum: 21.06.2004-24.06.2004
Kurzbeschreibung (Abstract):

The objective of this paper is to apply time series analysis and regression methods to air quality data in order to obtain the optimal statistical model for forecasting. The best estimated model is then used to produce one-step ahead point and interval estimates of future values of the Airborne Particles Index (API) series. API data is analysed using time series analysis, which resulted in an ARMA (2,3) with MAPE = 62. Regression analysis of this data, using temperature, wind speed and today's API, as explanatory variables, results in MAPE=42, which is substantially less than the previous model.

Freie Schlagworte: Time series analysis, Regression analysis
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 16 Apr 2018 09:04
Letzte Änderung: 24 Nov 2022 10:10
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen