Alexa, Marc ; Adamson, Anders (2004)
On Normals and Projection Operators for Surfaces Defined by Point Sets.
Symposium on Point Based Graphics.
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Levin's MLS projection operator allows defining a surface from a set of points and represents a versatile procedure to generate points on this surface. Practical problems of MLS surfaces are a complicated non-linear optimization to compute a tangent frame and the (commonly overlooked) fact that the normal to this tangent frame is not the surface normal. An alternative definition of Point Set Surfaces, inspired by the MLS projection, is the implicit surface version of Adamson & Alexa.We use this surface definition to show how to compute exact surface normals and present simple, efficient projection operators. The exact normal computation also allows computing orthogonal projections.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2004 |
Autor(en): | Alexa, Marc ; Adamson, Anders |
Art des Eintrags: | Bibliographie |
Titel: | On Normals and Projection Operators for Surfaces Defined by Point Sets |
Sprache: | Englisch |
Publikationsjahr: | 2004 |
Verlag: | Eurographics, Aire-la-Ville |
Veranstaltungstitel: | Symposium on Point Based Graphics |
Kurzbeschreibung (Abstract): | Levin's MLS projection operator allows defining a surface from a set of points and represents a versatile procedure to generate points on this surface. Practical problems of MLS surfaces are a complicated non-linear optimization to compute a tangent frame and the (commonly overlooked) fact that the normal to this tangent frame is not the surface normal. An alternative definition of Point Set Surfaces, inspired by the MLS projection, is the implicit surface version of Adamson & Alexa.We use this surface definition to show how to compute exact surface normals and present simple, efficient projection operators. The exact normal computation also allows computing orthogonal projections. |
Freie Schlagworte: | Shape approximation, Solid representation, Surface representation, Curve representation |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Graphisch-Interaktive Systeme |
Hinterlegungsdatum: | 16 Apr 2018 09:04 |
Letzte Änderung: | 16 Apr 2018 09:04 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |