TU Darmstadt / ULB / TUbiblio

Regression Analysis of Ozone Data

Abdollahian, M. ; Foroughi, Roya (2005)
Regression Analysis of Ozone Data.
IEEE International Conference on Information Technology: Coding and Computing 2005. Proceedings Vol. I.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The objective of this paper is to apply multiple regression techniques to ozone data in order to predict next day ozone levels. Examination of several possible contributing factors, showed that Wind speed, Mixing height where the complex chemical reactions that produce ozone take place, current and predicted next day temperatures and current ozone concentration are influential on the next day ozone concentration levels. These variables were then considered as explanatory variables in regression models. Subsequently, diagnostics tests and statistics including R-square residual analysis and Durbin-Watson Statistic were applied in order to select the best fitted model and finally the best prediction model was found using Mean Absolute Percentage Error (MAPE) and Mean Absolute Deviation (MAD) as predictive criteria.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2005
Autor(en): Abdollahian, M. ; Foroughi, Roya
Art des Eintrags: Bibliographie
Titel: Regression Analysis of Ozone Data
Sprache: Englisch
Publikationsjahr: 2005
Ort: Los Alamitos, Calif. [u.a.]
Verlag: IEEE Computer Society
Veranstaltungstitel: IEEE International Conference on Information Technology: Coding and Computing 2005. Proceedings Vol. I
Kurzbeschreibung (Abstract):

The objective of this paper is to apply multiple regression techniques to ozone data in order to predict next day ozone levels. Examination of several possible contributing factors, showed that Wind speed, Mixing height where the complex chemical reactions that produce ozone take place, current and predicted next day temperatures and current ozone concentration are influential on the next day ozone concentration levels. These variables were then considered as explanatory variables in regression models. Subsequently, diagnostics tests and statistics including R-square residual analysis and Durbin-Watson Statistic were applied in order to select the best fitted model and finally the best prediction model was found using Mean Absolute Percentage Error (MAPE) and Mean Absolute Deviation (MAD) as predictive criteria.

Freie Schlagworte: Regression analysis, Statistics, Forecasting theory
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 16 Apr 2018 09:04
Letzte Änderung: 23 Apr 2020 07:57
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen