TU Darmstadt / ULB / TUbiblio

Volumetrische Organ-Segmentierung mithilfe von Semantically Shape Constrained Deformable Models

Tulchiner, Roman (2008)
Volumetrische Organ-Segmentierung mithilfe von Semantically Shape Constrained Deformable Models.
Technische Universität Darmstadt
Masterarbeit, Bibliographie

Kurzbeschreibung (Abstract)

Die nachfolgende Arbeit beschäftigt sich mit einem der zentralen Themen aus dem Gebiet medizinischer Bildverarbeitung - der Organsegmentierung. Da ein rein manueller Segmentierungsprozess oft sehr zeitaufwendig ist, wurde eine Vielzahl computergestützter Segmentierungsverfahren entwickelt. Diese liefern aber häufig deutlich schlechtere Ergebnisse als die manuelle Segmentierung. Die grundlegende Problematik liegt hier unter anderem in der sehr hohen anatomischen Varianz menschlicher Organe, den teilweise sehr ähnlichen Absorptionsraten des benachbarten Gewebes sowie den kaum vermeidbaren Bildartefakten in den mit bildgebenden Verfahren der Medizin bezogenen Daten. Ein automatisiertes Verfahren, das schnelle, robuste und exakte Segmentierung medizinischer Daten ermöglicht, ist also weiterhin Gegenstand aktueller Forschung. In dieser Arbeit wird das modellbasierte Verfahren der Organsegmentierung verfolgt. Bei diesem Verfahren wird Vorwissen, zum Beispiel über die Beschaffenheit und die Form des Organs, durch ein explizites Organmodell gegeben. Der in der vorliegenden Abschlussarbeit entwickelte Ansatz erweitert das modellbasierte Verfahren um Vorwissen über die Nachbarschaftsverhältnisse und die Varianz der Gewebebeschaffenheit an bestimmten Organstellen. Dazu werden im Modell gebietsspezifische Anpassungskriterien definiert. Dadurch soll eine bessere lokale Anpassung des Modells sowohl an die Organstellen mit hoher Strukturvarianz als auch an die Bereiche mit geringer Absorptionswertabweichung des Nachbargewebes erreicht werden. Anschließend wird das entwickelte Verfahren mit Hilfe von Datensätzen der linken Niere und der Milz gegen die manuelle Segmentierung evaluiert.

Typ des Eintrags: Masterarbeit
Erschienen: 2008
Autor(en): Tulchiner, Roman
Art des Eintrags: Bibliographie
Titel: Volumetrische Organ-Segmentierung mithilfe von Semantically Shape Constrained Deformable Models
Sprache: Deutsch
Publikationsjahr: 2008
Kurzbeschreibung (Abstract):

Die nachfolgende Arbeit beschäftigt sich mit einem der zentralen Themen aus dem Gebiet medizinischer Bildverarbeitung - der Organsegmentierung. Da ein rein manueller Segmentierungsprozess oft sehr zeitaufwendig ist, wurde eine Vielzahl computergestützter Segmentierungsverfahren entwickelt. Diese liefern aber häufig deutlich schlechtere Ergebnisse als die manuelle Segmentierung. Die grundlegende Problematik liegt hier unter anderem in der sehr hohen anatomischen Varianz menschlicher Organe, den teilweise sehr ähnlichen Absorptionsraten des benachbarten Gewebes sowie den kaum vermeidbaren Bildartefakten in den mit bildgebenden Verfahren der Medizin bezogenen Daten. Ein automatisiertes Verfahren, das schnelle, robuste und exakte Segmentierung medizinischer Daten ermöglicht, ist also weiterhin Gegenstand aktueller Forschung. In dieser Arbeit wird das modellbasierte Verfahren der Organsegmentierung verfolgt. Bei diesem Verfahren wird Vorwissen, zum Beispiel über die Beschaffenheit und die Form des Organs, durch ein explizites Organmodell gegeben. Der in der vorliegenden Abschlussarbeit entwickelte Ansatz erweitert das modellbasierte Verfahren um Vorwissen über die Nachbarschaftsverhältnisse und die Varianz der Gewebebeschaffenheit an bestimmten Organstellen. Dazu werden im Modell gebietsspezifische Anpassungskriterien definiert. Dadurch soll eine bessere lokale Anpassung des Modells sowohl an die Organstellen mit hoher Strukturvarianz als auch an die Bereiche mit geringer Absorptionswertabweichung des Nachbargewebes erreicht werden. Anschließend wird das entwickelte Verfahren mit Hilfe von Datensätzen der linken Niere und der Milz gegen die manuelle Segmentierung evaluiert.

Freie Schlagworte: Model based segmentations, Computed tomography (CT), Geometric constraints
Zusätzliche Informationen:

111 S.

Fachbereich(e)/-gebiet(e): nicht bekannt
20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 16 Apr 2018 09:03
Letzte Änderung: 16 Apr 2018 09:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen