TU Darmstadt / ULB / TUbiblio

Hardware-Accelerated, High-Quality Rendering Based on Trivariate Splines Approximating Volume Data

Kalbe, Thomas ; Zeilfelder, Frank (2008)
Hardware-Accelerated, High-Quality Rendering Based on Trivariate Splines Approximating Volume Data.
In: Computer Graphics Forum, 27 (2)
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We develop an approach for hardware-accelerated, high-quality rendering of volume data using trivariate splines. The proposed quasi-interpolating schemes are realtime reconstructions. The low total degrees provide several advantages for our GPU implementation. In particular, intersecting rays with spline isosurfaces for direct Phong illumination is performed by simple root finding algorithms (analytic and iterative), while the necessary normals result from blossoming. Since visualizations are on a fragment base, our renderer for isosurfaces includes an automatic level of detail. While we use well-known spatial data structures in the CPU part of the algorithm for hierarchical view frustum culling and memory reduction, our GPU implementations have to take the highly complex structure of the splines into account. These include an appropriate organization of the data streams, i.e. we develop an advanced encoding scheme for the spline coefficients, as well as an implicit scheme for bounding geometry retrieval. In addition, we propose an elaborated clipping procedure to be performed in the fragment shader. These features essentially reduce bus traffic, memory consumption, and data access on the GPU leading to interactive frame rates for renderings of high visual quality. Compared with pure CPU implementations and existing GPU implementations for trivariate polynomials frame rates increase by factors between 10 and 100.

Typ des Eintrags: Artikel
Erschienen: 2008
Autor(en): Kalbe, Thomas ; Zeilfelder, Frank
Art des Eintrags: Bibliographie
Titel: Hardware-Accelerated, High-Quality Rendering Based on Trivariate Splines Approximating Volume Data
Sprache: Englisch
Publikationsjahr: 2008
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Computer Graphics Forum
Jahrgang/Volume einer Zeitschrift: 27
(Heft-)Nummer: 2
Kurzbeschreibung (Abstract):

We develop an approach for hardware-accelerated, high-quality rendering of volume data using trivariate splines. The proposed quasi-interpolating schemes are realtime reconstructions. The low total degrees provide several advantages for our GPU implementation. In particular, intersecting rays with spline isosurfaces for direct Phong illumination is performed by simple root finding algorithms (analytic and iterative), while the necessary normals result from blossoming. Since visualizations are on a fragment base, our renderer for isosurfaces includes an automatic level of detail. While we use well-known spatial data structures in the CPU part of the algorithm for hierarchical view frustum culling and memory reduction, our GPU implementations have to take the highly complex structure of the splines into account. These include an appropriate organization of the data streams, i.e. we develop an advanced encoding scheme for the spline coefficients, as well as an implicit scheme for bounding geometry retrieval. In addition, we propose an elaborated clipping procedure to be performed in the fragment shader. These features essentially reduce bus traffic, memory consumption, and data access on the GPU leading to interactive frame rates for renderings of high visual quality. Compared with pure CPU implementations and existing GPU implementations for trivariate polynomials frame rates increase by factors between 10 and 100.

Freie Schlagworte: Splines, Ray casting, Volume data, Graphics Processing Unit (GPU), Approximation
Fachbereich(e)/-gebiet(e): nicht bekannt
20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 16 Apr 2018 09:03
Letzte Änderung: 16 Apr 2018 09:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen