TU Darmstadt / ULB / TUbiblio

Sensing in-plane nanomechanical surface and sub-surface properties of polymers: local shear stress as function of the indentation depth

Dietz, Christian (2018)
Sensing in-plane nanomechanical surface and sub-surface properties of polymers: local shear stress as function of the indentation depth.
In: Nanoscale, 10 (1)
doi: 10.1039/C7NR07147G
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Dynamic force microscopy (DFM) is an excellent tool for the study of the compositional and nanomechanical properties of polymers that exploits the flexural eigenmodes of a cantilever comprising a sharp tip vibrating perpendicular to the sample surface. However, the in-plane nanomechanical properties of a specimen cannot be detected by this technique. Here, a bimodal approach was developed where flexural and torsional eigenmodes are driven simultaneously. The corresponding vibrational amplitude and phase shift of the vertical tip motion were utilized for topographical feedback and out-of-plane dissipative interaction acquisition, respectively, whereas the frequency shift and the drive amplitude of the lateral tip motion mapped the in-plane conservative and dissipative interactions of two heterogeneous polymers: an elastomeric polypropylene (ePP) and a polystyrene-block-polybutadiene diblock copolymer (SB). The shear stress at different sub-surface levels revealed an amorphous cover layer as well as a “slipping” plane on the ePP crystallites. The imaging of SB supported by dynamic force spectroscopy experiments showed that SB exhibits considerably different in- and out-of-plane nanomechanical properties at certain areas due to the complex polymer conformation of this diblock copolymer accompanied by inter- and intramolecular interactions that give rise to its viscoelastic behavior.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Dietz, Christian
Art des Eintrags: Bibliographie
Titel: Sensing in-plane nanomechanical surface and sub-surface properties of polymers: local shear stress as function of the indentation depth
Sprache: Englisch
Publikationsjahr: 7 Januar 2018
Verlag: Royal Society of Chemistry
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nanoscale
Jahrgang/Volume einer Zeitschrift: 10
(Heft-)Nummer: 1
DOI: 10.1039/C7NR07147G
URL / URN: https://doi.org/10.1039/C7NR07147G
Kurzbeschreibung (Abstract):

Dynamic force microscopy (DFM) is an excellent tool for the study of the compositional and nanomechanical properties of polymers that exploits the flexural eigenmodes of a cantilever comprising a sharp tip vibrating perpendicular to the sample surface. However, the in-plane nanomechanical properties of a specimen cannot be detected by this technique. Here, a bimodal approach was developed where flexural and torsional eigenmodes are driven simultaneously. The corresponding vibrational amplitude and phase shift of the vertical tip motion were utilized for topographical feedback and out-of-plane dissipative interaction acquisition, respectively, whereas the frequency shift and the drive amplitude of the lateral tip motion mapped the in-plane conservative and dissipative interactions of two heterogeneous polymers: an elastomeric polypropylene (ePP) and a polystyrene-block-polybutadiene diblock copolymer (SB). The shear stress at different sub-surface levels revealed an amorphous cover layer as well as a “slipping” plane on the ePP crystallites. The imaging of SB supported by dynamic force spectroscopy experiments showed that SB exhibits considerably different in- and out-of-plane nanomechanical properties at certain areas due to the complex polymer conformation of this diblock copolymer accompanied by inter- and intramolecular interactions that give rise to its viscoelastic behavior.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physics of Surfaces
Exzellenzinitiative
Exzellenzinitiative > Exzellenzcluster
Exzellenzinitiative > Exzellenzcluster > Center of Smart Interfaces (CSI)
Hinterlegungsdatum: 08 Jan 2018 06:36
Letzte Änderung: 20 Dez 2018 11:17
PPN:
Sponsoren: The author thanks the Center of Smart Interfaces and the Deutsche Forschungsgemeinschaft (Sachbeihilfe DI 2176/2-1) for financial support.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen