TU Darmstadt / ULB / TUbiblio

Influence of magnetic field, chemical pressure and hydrostatic pressure on the structural and magnetocaloric properties of the Mn–Ni–Ge system

Taubel, Andreas ; Gottschall, Tino ; Fries, Maximilian ; Faske, Tom ; Skokov, Konstantin P. ; Gutfleisch, Oliver (2017)
Influence of magnetic field, chemical pressure and hydrostatic pressure on the structural and magnetocaloric properties of the Mn–Ni–Ge system.
In: Journal of Physics D: Applied Physics, 50 (46)
doi: 10.1088/1361-6463/aa8e89
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The magnetic, structural and thermomagnetic properties of the MM'X material system of MnNiGe are evaluated with respect to their utilization in magnetocaloric refrigeration. The effects of separate and simultaneous substitution of Fe for Mn and Si on the Ge site are analysed in detail to highlight the benefits of the isostructural alloying method. A large range of compounds with precisely tunable structural and magnetic properties and the tuning of the phase transition by chemical pressure are compared to the effect of hydrostatic pressure on the martensitic transition.

We obtained very large isothermal entropy changes $\Delta S_{\rm iso}$ of up to $-37.8$ J ${\rm kg}^{-1}$ ${\rm K}^{-1}$ based on magnetic measurements for (Mn,Fe)NiGe in moderate fields of 2 T. The enhanced magnetocaloric properties for transitions around room temperature are demonstrated for samples with reduced Ge, a resource critical element. An adiabatic temperature change of 1.3 K in a magnetic field change of 1.93 T is observed upon direct measurement for a sample with Fe and Si substitution. However, the high volume change of 2.8% results in an embrittlement of large particles into several smaller fragments and leads to a sensitivity of the magnetocaloric properties towards sample shape and size. On the other hand, this large volume change enables to induce the phase transition with a large shift of the transition temperature by application of hydrostatic pressure (72 K ${\rm GPa}^{-1}$ ). Thus, the effect of 1.88 GPa is equivalent to a substitution of 10% Fe for Mn and can act as an additional stimulus to induce the phase transition and support the low magnetic field dependence of the phase transition temperature for multicaloric applications.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Taubel, Andreas ; Gottschall, Tino ; Fries, Maximilian ; Faske, Tom ; Skokov, Konstantin P. ; Gutfleisch, Oliver
Art des Eintrags: Bibliographie
Titel: Influence of magnetic field, chemical pressure and hydrostatic pressure on the structural and magnetocaloric properties of the Mn–Ni–Ge system
Sprache: Englisch
Publikationsjahr: 26 Oktober 2017
Verlag: IOP Publishing Ltd
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Physics D: Applied Physics
Jahrgang/Volume einer Zeitschrift: 50
(Heft-)Nummer: 46
DOI: 10.1088/1361-6463/aa8e89
URL / URN: https://doi.org/10.1088/1361-6463/aa8e89
Kurzbeschreibung (Abstract):

The magnetic, structural and thermomagnetic properties of the MM'X material system of MnNiGe are evaluated with respect to their utilization in magnetocaloric refrigeration. The effects of separate and simultaneous substitution of Fe for Mn and Si on the Ge site are analysed in detail to highlight the benefits of the isostructural alloying method. A large range of compounds with precisely tunable structural and magnetic properties and the tuning of the phase transition by chemical pressure are compared to the effect of hydrostatic pressure on the martensitic transition.

We obtained very large isothermal entropy changes $\Delta S_{\rm iso}$ of up to $-37.8$ J ${\rm kg}^{-1}$ ${\rm K}^{-1}$ based on magnetic measurements for (Mn,Fe)NiGe in moderate fields of 2 T. The enhanced magnetocaloric properties for transitions around room temperature are demonstrated for samples with reduced Ge, a resource critical element. An adiabatic temperature change of 1.3 K in a magnetic field change of 1.93 T is observed upon direct measurement for a sample with Fe and Si substitution. However, the high volume change of 2.8% results in an embrittlement of large particles into several smaller fragments and leads to a sensitivity of the magnetocaloric properties towards sample shape and size. On the other hand, this large volume change enables to induce the phase transition with a large shift of the transition temperature by application of hydrostatic pressure (72 K ${\rm GPa}^{-1}$ ). Thus, the effect of 1.88 GPa is equivalent to a substitution of 10% Fe for Mn and can act as an additional stimulus to induce the phase transition and support the low magnetic field dependence of the phase transition temperature for multicaloric applications.

Zusätzliche Informationen:

Special Issue on Caloric Materials

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Strukturforschung
Hinterlegungsdatum: 27 Dez 2017 09:09
Letzte Änderung: 31 Jan 2019 15:15
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen