Spannring, Christopher ; Ullmann, Sebastian ; Lang, Jens
Hrsg.: Schäfer, Michael ; Behr, Marek ; Mehl, Miriam ; Wohlmuth, Barbara (2018)
A weighted reduced basis method for parabolic PDEs with random data.
In: Recent Advances in Computational Engineering
doi: 10.1007/978-3-319-93891-2_9
Buchkapitel, Bibliographie
Kurzbeschreibung (Abstract)
This work considers a weighted POD-greedy method to estimate statistical outputs parabolic PDE problems with parametrized random data. The key idea of weighted reduced basis methods is to weight the parameter-dependent error estimate according to a probability measure in the set-up of the reduced space. The error of stochastic finite element solutions is usually measured in a root mean square sense regarding their dependence on the stochastic input parameters. An orthogonal projection of a snapshot set onto a corresponding POD basis defines an optimum reduced approximation in terms of a Monte Carlo discretization of the root mean square error. The errors of a weighted POD-greedy Galerkin solution are compared against an orthogonal projection of the underlying snapshots onto a POD basis for a numerical example involving thermal conduction. In particular, it is assessed whether a weighted POD-greedy solutions is able to come significantly closer to the optimum than a non-weighted equivalent. Additionally, the performance of a weighted POD-greedy Galerkin solution is considered with respect to the mean absolute error of an adjoint-corrected functional of the reduced solution.
Typ des Eintrags: | Buchkapitel |
---|---|
Erschienen: | 2018 |
Herausgeber: | Schäfer, Michael ; Behr, Marek ; Mehl, Miriam ; Wohlmuth, Barbara |
Autor(en): | Spannring, Christopher ; Ullmann, Sebastian ; Lang, Jens |
Art des Eintrags: | Bibliographie |
Titel: | A weighted reduced basis method for parabolic PDEs with random data |
Sprache: | Englisch |
Publikationsjahr: | 22 August 2018 |
Ort: | Cham |
Verlag: | Springer International Publishing |
Buchtitel: | Recent Advances in Computational Engineering |
Reihe: | Lecture Notes in Computational Science and Engineering |
Band einer Reihe: | 124 |
DOI: | 10.1007/978-3-319-93891-2_9 |
URL / URN: | https://link.springer.com/chapter/10.1007/978-3-319-93891-2_... |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | This work considers a weighted POD-greedy method to estimate statistical outputs parabolic PDE problems with parametrized random data. The key idea of weighted reduced basis methods is to weight the parameter-dependent error estimate according to a probability measure in the set-up of the reduced space. The error of stochastic finite element solutions is usually measured in a root mean square sense regarding their dependence on the stochastic input parameters. An orthogonal projection of a snapshot set onto a corresponding POD basis defines an optimum reduced approximation in terms of a Monte Carlo discretization of the root mean square error. The errors of a weighted POD-greedy Galerkin solution are compared against an orthogonal projection of the underlying snapshots onto a POD basis for a numerical example involving thermal conduction. In particular, it is assessed whether a weighted POD-greedy solutions is able to come significantly closer to the optimum than a non-weighted equivalent. Additionally, the performance of a weighted POD-greedy Galerkin solution is considered with respect to the mean absolute error of an adjoint-corrected functional of the reduced solution. |
Fachbereich(e)/-gebiet(e): | Exzellenzinitiative Exzellenzinitiative > Graduiertenschulen Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE) Exzellenzinitiative > Graduiertenschulen > Graduate School of Energy Science and Engineering (ESE) 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Numerik und wissenschaftliches Rechnen |
Hinterlegungsdatum: | 21 Dez 2017 08:58 |
Letzte Änderung: | 13 Sep 2018 09:57 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |