Reisert, Patrick ; Calotoiu, Alexandru ; Shudler, Sergei ; Wolf, Felix (2017)
Following the Blind Seer - Creating Better Performance Models Using Less Information.
23rd International European Conference on Parallel and Distributed Computing (Euro-Par 2017). Santiago de Compostela, Spanien (28. 08.-01.09.2017)
doi: 10.1007/978-3-319-64203-1_8
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Offering insights into the behavior of applications at higher scale, performance models are useful for finding performance bugs and tuning the system. Extra-P, a tool for automated performance modeling, uses statistical methods to automatically generate, from a small number of performance measurements, models that can be used to predict performance where no measurements are available. However, the current version requires the manual pre-configuration of a search space, which might turn out to be unsuitable for the problem at hand. Furthermore, noise in the data often leads to models that indicate a worse behavior than there actually is. In this paper, we propose a new model-generation algorithm that solves both of the above problems: The search space is built and automatically refined on demand, and a scale-independent error metric tells both when to stop the refinement process and whether a model reflects faithfully enough the behavior the data exhibits. This makes Extra-P easier to use, while also allowing it to produce more accurate results. Using data from previous case studies, we show that the mean relative prediction error decreases from 46% to 13%.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2017 |
Autor(en): | Reisert, Patrick ; Calotoiu, Alexandru ; Shudler, Sergei ; Wolf, Felix |
Art des Eintrags: | Bibliographie |
Titel: | Following the Blind Seer - Creating Better Performance Models Using Less Information |
Sprache: | Englisch |
Publikationsjahr: | 1 August 2017 |
Verlag: | Springer |
Buchtitel: | Euro-Par 2017: Parallel Processing |
Reihe: | Lecture Notes in Computer Science |
Band einer Reihe: | 10417 |
Veranstaltungstitel: | 23rd International European Conference on Parallel and Distributed Computing (Euro-Par 2017) |
Veranstaltungsort: | Santiago de Compostela, Spanien |
Veranstaltungsdatum: | 28. 08.-01.09.2017 |
DOI: | 10.1007/978-3-319-64203-1_8 |
Kurzbeschreibung (Abstract): | Offering insights into the behavior of applications at higher scale, performance models are useful for finding performance bugs and tuning the system. Extra-P, a tool for automated performance modeling, uses statistical methods to automatically generate, from a small number of performance measurements, models that can be used to predict performance where no measurements are available. However, the current version requires the manual pre-configuration of a search space, which might turn out to be unsuitable for the problem at hand. Furthermore, noise in the data often leads to models that indicate a worse behavior than there actually is. In this paper, we propose a new model-generation algorithm that solves both of the above problems: The search space is built and automatically refined on demand, and a scale-independent error metric tells both when to stop the refinement process and whether a model reflects faithfully enough the behavior the data exhibits. This makes Extra-P easier to use, while also allowing it to produce more accurate results. Using data from previous case studies, we show that the mean relative prediction error decreases from 46% to 13%. |
Freie Schlagworte: | BMBF|01IH16008D; DFG|SPPEXA 1648; DoE|DE-SC0015524 |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Parallele Programmierung Zentrale Einrichtungen Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner |
Hinterlegungsdatum: | 18 Jan 2018 11:45 |
Letzte Änderung: | 13 Jun 2024 14:24 |
PPN: | 519122410 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |