TU Darmstadt / ULB / TUbiblio

Following the Blind Seer - Creating Better Performance Models Using Less Information

Reisert, Patrick ; Calotoiu, Alexandru ; Shudler, Sergei ; Wolf, Felix (2017)
Following the Blind Seer - Creating Better Performance Models Using Less Information.
23rd International European Conference on Parallel and Distributed Computing (Euro-Par 2017). Santiago de Compostela, Spanien (28. 08.-01.09.2017)
doi: 10.1007/978-3-319-64203-1_8
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Offering insights into the behavior of applications at higher scale, performance models are useful for finding performance bugs and tuning the system. Extra-P, a tool for automated performance modeling, uses statistical methods to automatically generate, from a small number of performance measurements, models that can be used to predict performance where no measurements are available. However, the current version requires the manual pre-configuration of a search space, which might turn out to be unsuitable for the problem at hand. Furthermore, noise in the data often leads to models that indicate a worse behavior than there actually is. In this paper, we propose a new model-generation algorithm that solves both of the above problems: The search space is built and automatically refined on demand, and a scale-independent error metric tells both when to stop the refinement process and whether a model reflects faithfully enough the behavior the data exhibits. This makes Extra-P easier to use, while also allowing it to produce more accurate results. Using data from previous case studies, we show that the mean relative prediction error decreases from 46% to 13%.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2017
Autor(en): Reisert, Patrick ; Calotoiu, Alexandru ; Shudler, Sergei ; Wolf, Felix
Art des Eintrags: Bibliographie
Titel: Following the Blind Seer - Creating Better Performance Models Using Less Information
Sprache: Englisch
Publikationsjahr: 1 August 2017
Verlag: Springer
Buchtitel: Euro-Par 2017: Parallel Processing
Reihe: Lecture Notes in Computer Science
Band einer Reihe: 10417
Veranstaltungstitel: 23rd International European Conference on Parallel and Distributed Computing (Euro-Par 2017)
Veranstaltungsort: Santiago de Compostela, Spanien
Veranstaltungsdatum: 28. 08.-01.09.2017
DOI: 10.1007/978-3-319-64203-1_8
Kurzbeschreibung (Abstract):

Offering insights into the behavior of applications at higher scale, performance models are useful for finding performance bugs and tuning the system. Extra-P, a tool for automated performance modeling, uses statistical methods to automatically generate, from a small number of performance measurements, models that can be used to predict performance where no measurements are available. However, the current version requires the manual pre-configuration of a search space, which might turn out to be unsuitable for the problem at hand. Furthermore, noise in the data often leads to models that indicate a worse behavior than there actually is. In this paper, we propose a new model-generation algorithm that solves both of the above problems: The search space is built and automatically refined on demand, and a scale-independent error metric tells both when to stop the refinement process and whether a model reflects faithfully enough the behavior the data exhibits. This makes Extra-P easier to use, while also allowing it to produce more accurate results. Using data from previous case studies, we show that the mean relative prediction error decreases from 46% to 13%.

Freie Schlagworte: BMBF|01IH16008D; DFG|SPPEXA 1648; DoE|DE-SC0015524
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Parallele Programmierung
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 18 Jan 2018 11:45
Letzte Änderung: 13 Jun 2024 14:24
PPN: 519122410
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen