TU Darmstadt / ULB / TUbiblio

Highly Porous Silicon Embedded in a Ceramic Matrix: A Stable High-Capacity Electrode for Li-Ion Batteries

Vrankovic, Dragoljub ; Graczyk-Zajac, Magdalena ; Kalcher, Constanze ; Rohrer, Jochen ; Becker, Malin ; Stabler, Christina ; Trykowski, Grzegorz ; Albe, Karsten ; Riedel, Ralf (2017)
Highly Porous Silicon Embedded in a Ceramic Matrix: A Stable High-Capacity Electrode for Li-Ion Batteries.
In: ACS Nano, 11 (11)
doi: 10.1021/acsnano.7b06031
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We demonstrate a cost-effective synthesis route that provides Si-based anode materials with capacities between 2000 and 3000 mAh·g_Si^–1 (400 and 600 mAh·g_composite^–1), Coulombic efficiencies above 99.5%, and almost 100% capacity retention over more than 100 cycles. The Si-based composite is prepared from highly porous silicon (obtained by reduction of silica) by encapsulation in an organic carbon and polymer-derived silicon oxycarbide (C/SiOC) matrix. Molecular dynamics simulations show that the highly porous silicon morphology delivers free volume for the accommodation of strain leading to no macroscopic changes during initial Li–Si alloying. In addition, a carbon layer provides an electrical contact, whereas the SiOC matrix significantly diminishes the interface between the electrolyte and the electrode material and thus suppresses the formation of a solid–electrolyte interphase on Si. Electrochemical tests of the micrometer-sized, glass-fiber-derived silicon demonstrate the up-scaling potential of the presented approach

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Vrankovic, Dragoljub ; Graczyk-Zajac, Magdalena ; Kalcher, Constanze ; Rohrer, Jochen ; Becker, Malin ; Stabler, Christina ; Trykowski, Grzegorz ; Albe, Karsten ; Riedel, Ralf
Art des Eintrags: Bibliographie
Titel: Highly Porous Silicon Embedded in a Ceramic Matrix: A Stable High-Capacity Electrode for Li-Ion Batteries
Sprache: Englisch
Publikationsjahr: 23 Oktober 2017
Verlag: ACS Publications
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ACS Nano
Jahrgang/Volume einer Zeitschrift: 11
(Heft-)Nummer: 11
DOI: 10.1021/acsnano.7b06031
URL / URN: https://doi.org/10.1021/acsnano.7b06031
Kurzbeschreibung (Abstract):

We demonstrate a cost-effective synthesis route that provides Si-based anode materials with capacities between 2000 and 3000 mAh·g_Si^–1 (400 and 600 mAh·g_composite^–1), Coulombic efficiencies above 99.5%, and almost 100% capacity retention over more than 100 cycles. The Si-based composite is prepared from highly porous silicon (obtained by reduction of silica) by encapsulation in an organic carbon and polymer-derived silicon oxycarbide (C/SiOC) matrix. Molecular dynamics simulations show that the highly porous silicon morphology delivers free volume for the accommodation of strain leading to no macroscopic changes during initial Li–Si alloying. In addition, a carbon layer provides an electrical contact, whereas the SiOC matrix significantly diminishes the interface between the electrolyte and the electrode material and thus suppresses the formation of a solid–electrolyte interphase on Si. Electrochemical tests of the micrometer-sized, glass-fiber-derived silicon demonstrate the up-scaling potential of the presented approach

Freie Schlagworte: Li-ion battery, molecular dynamics simulations, nanocomposite anode material, porous Silicon, silicon oxycarbide
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
11 Fachbereich Material- und Geowissenschaften
Zentrale Einrichtungen
Hinterlegungsdatum: 07 Dez 2017 10:42
Letzte Änderung: 27 Dez 2017 08:53
PPN:
Sponsoren: We gratefully acknowledge the financial support of the German Research Foundation (DFG) within SPP 1473/JP8, RO 4542/2-1 and IO 64/7-1.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen