TU Darmstadt / ULB / TUbiblio

On estimation of surrogate models for multivariate computer experiments

Bauer, Benedikt ; Heimrich, Felix ; Kohler, Michael ; Krzyzak, Adam (2017)
On estimation of surrogate models for multivariate computer experiments.
In: Annals of the Institute of Statistical Mathematics, 69
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Estimation of surrogate models for computer experiments leads to nonparametric regression estimation problems without noise in the dependent variable. In this paper, we propose an empirical maximal deviation minimization principle to construct estimates in this context and analyze the rate of convergence of corresponding quantile estimates. As an application, we consider estimation of computer experiments with moderately high dimension by neural networks and show that here we can circumvent the so-called curse of dimensionality by imposing rather general assumptions on the structure of the regression function. The estimates are illustrated by applying them to simulated data and to a simulation model in mechanical engineering.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Bauer, Benedikt ; Heimrich, Felix ; Kohler, Michael ; Krzyzak, Adam
Art des Eintrags: Bibliographie
Titel: On estimation of surrogate models for multivariate computer experiments
Sprache: Englisch
Publikationsjahr: 2 November 2017
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Annals of the Institute of Statistical Mathematics
Jahrgang/Volume einer Zeitschrift: 69
URL / URN: Http://10.1007/s10463-017-0627-8
Kurzbeschreibung (Abstract):

Estimation of surrogate models for computer experiments leads to nonparametric regression estimation problems without noise in the dependent variable. In this paper, we propose an empirical maximal deviation minimization principle to construct estimates in this context and analyze the rate of convergence of corresponding quantile estimates. As an application, we consider estimation of computer experiments with moderately high dimension by neural networks and show that here we can circumvent the so-called curse of dimensionality by imposing rather general assumptions on the structure of the regression function. The estimates are illustrated by applying them to simulated data and to a simulation model in mechanical engineering.

Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau > Fachgebiet Datenverarbeitung in der Konstruktion (DiK) (ab 01.09.2022 umbenannt in "Product Life Cycle Management")
04 Fachbereich Mathematik
04 Fachbereich Mathematik > Stochastik
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 805: Beherrschung von Unsicherheit in lasttragenden Systemen des Maschinenbaus
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
16 Fachbereich Maschinenbau
DFG-Sonderforschungsbereiche (inkl. Transregio)
Hinterlegungsdatum: 04 Dez 2017 07:53
Letzte Änderung: 04 Dez 2017 07:53
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen