TU Darmstadt / ULB / TUbiblio

A Poisson Gamma Probabilistic Model for Latent Node-group Memberships in Dynamic Networks

Yang, S. ; Koeppl, H. (2018)
A Poisson Gamma Probabilistic Model for Latent Node-group Memberships in Dynamic Networks.
AAAI 2018, Association for the Advancement of Artificial Intelligence. New Orleans (02.02.2018-07.02.2018)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We present a probabilistic model for learning from dynamic relational data, wherein the observed interactions among networked nodes are modeled via the Bernoulli Poisson link function, and the underlying network structure are characterized by nonnegative latent node-group memberships, which are assumed to be gamma distributed. The latent memberships evolve according to a Markov process. The optimal number of latent groups can be determined by data itself. The computational complexity of our method scales with the number of non-zero links, which makes it scalable to large sparse dynamic relational data. We present batch and online Gibbs sampling algorithms to perform model inference. Finally, we demonstrate the model’s performance on both synthetic and real-world datasets compared to state-of-the-art methods.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2018
Autor(en): Yang, S. ; Koeppl, H.
Art des Eintrags: Bibliographie
Titel: A Poisson Gamma Probabilistic Model for Latent Node-group Memberships in Dynamic Networks
Sprache: Englisch
Publikationsjahr: 2018
Ort: New Orleans
Veranstaltungstitel: AAAI 2018, Association for the Advancement of Artificial Intelligence
Veranstaltungsort: New Orleans
Veranstaltungsdatum: 02.02.2018-07.02.2018
Kurzbeschreibung (Abstract):

We present a probabilistic model for learning from dynamic relational data, wherein the observed interactions among networked nodes are modeled via the Bernoulli Poisson link function, and the underlying network structure are characterized by nonnegative latent node-group memberships, which are assumed to be gamma distributed. The latent memberships evolve according to a Markov process. The optimal number of latent groups can be determined by data itself. The computational complexity of our method scales with the number of non-zero links, which makes it scalable to large sparse dynamic relational data. We present batch and online Gibbs sampling algorithms to perform model inference. Finally, we demonstrate the model’s performance on both synthetic and real-world datasets compared to state-of-the-art methods.

Freie Schlagworte: artificial intelligence, alogrithms, probabilistic model, network, computation, sparse dynamic, model interference
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Zentrale Einrichtungen
Zentrale Einrichtungen > Centre for Cognitive Science (CCS)
Hinterlegungsdatum: 15 Nov 2017 07:50
Letzte Änderung: 02 Jul 2024 09:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen