TU Darmstadt / ULB / TUbiblio

Part based object detection with a flexible context constraint

Biehl, Robert (2013)
Part based object detection with a flexible context constraint.
Technische Universität Darmstadt
Diplom- oder Magisterarbeit, Erstveröffentlichung

Kurzbeschreibung (Abstract)

This work describes an object detection system which integrates flexible spatial context constraints to improve detection performance. It allows spatial and scale deformation of the object relative to its context. The contextual model extends an existing deformable parts model and is trained on partially labeled data using a latent SVM. The approach can be applied to any object detection problem where the object class always exists in one typical image context, but the context can appear independently. A new scoring method is used to model the asymmetric relationship between object and context. Furthermore, the system enables the use of contextual non-maximum suppression, a context sensitive way to discard redundant detections. Trained on our combined dataset of dresses and persons, the system achieves a significant improvement in detection performance when compared with basic deformable parts models.

Typ des Eintrags: Diplom- oder Magisterarbeit
Erschienen: 2013
Autor(en): Biehl, Robert
Art des Eintrags: Erstveröffentlichung
Titel: Part based object detection with a flexible context constraint
Sprache: Englisch
Referenten: Roth, Prof. Stefan ; Franzel, M. Sc. Thorsten
Publikationsjahr: 1 Juli 2013
Ort: Darmstadt
Datum der mündlichen Prüfung: 8 Juni 2013
URL / URN: http://tuprints.ulb.tu-darmstadt.de/6868
Kurzbeschreibung (Abstract):

This work describes an object detection system which integrates flexible spatial context constraints to improve detection performance. It allows spatial and scale deformation of the object relative to its context. The contextual model extends an existing deformable parts model and is trained on partially labeled data using a latent SVM. The approach can be applied to any object detection problem where the object class always exists in one typical image context, but the context can appear independently. A new scoring method is used to model the asymmetric relationship between object and context. Furthermore, the system enables the use of contextual non-maximum suppression, a context sensitive way to discard redundant detections. Trained on our combined dataset of dresses and persons, the system achieves a significant improvement in detection performance when compared with basic deformable parts models.

URN: urn:nbn:de:tuda-tuprints-68687
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik
Hinterlegungsdatum: 22 Okt 2017 19:55
Letzte Änderung: 22 Okt 2017 19:55
PPN:
Referenten: Roth, Prof. Stefan ; Franzel, M. Sc. Thorsten
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: 8 Juni 2013
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen