TU Darmstadt / ULB / TUbiblio

Second-Order Optimality Conditions and Improved Convergence Results for Regularization Methods for Cardinality-Constrained Optimization Problems

Bucher, Max ; Schwartz, Alexandra (2018)
Second-Order Optimality Conditions and Improved Convergence Results for Regularization Methods for Cardinality-Constrained Optimization Problems.
In: Journal of Optimization Theory and Applications, 178 (2)
doi: 10.1007/s10957-018-1320-7
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We consider nonlinear optimization problems with cardinality constraints. Based on a continuous reformulation, we introduce second-order necessary and sufficient optimality conditions. Under such a second-order condition, we can guarantee local uniqueness of Mordukhovich stationary points. Finally, we use this observation to provide extended local convergence theory for a Scholtes-type regularization method, which guarantees the existence and convergence of iterates under suitable assumptions. This convergence theory can also be applied to other regularization schemes.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Bucher, Max ; Schwartz, Alexandra
Art des Eintrags: Bibliographie
Titel: Second-Order Optimality Conditions and Improved Convergence Results for Regularization Methods for Cardinality-Constrained Optimization Problems
Sprache: Englisch
Publikationsjahr: August 2018
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Optimization Theory and Applications
Jahrgang/Volume einer Zeitschrift: 178
(Heft-)Nummer: 2
DOI: 10.1007/s10957-018-1320-7
URL / URN: https://doi.org/10.1007/s10957-018-1320-7
Kurzbeschreibung (Abstract):

We consider nonlinear optimization problems with cardinality constraints. Based on a continuous reformulation, we introduce second-order necessary and sufficient optimality conditions. Under such a second-order condition, we can guarantee local uniqueness of Mordukhovich stationary points. Finally, we use this observation to provide extended local convergence theory for a Scholtes-type regularization method, which guarantees the existence and convergence of iterates under suitable assumptions. This convergence theory can also be applied to other regularization schemes.

Freie Schlagworte: Mathematics - Optimization and Control (math.OC)
Fachbereich(e)/-gebiet(e): Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
04 Fachbereich Mathematik
04 Fachbereich Mathematik > Optimierung
Hinterlegungsdatum: 11 Sep 2017 12:51
Letzte Änderung: 23 Aug 2018 08:02
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen