TU Darmstadt / ULB / TUbiblio

Robust Distributed Cooperative RSS-based Localization for Directed Graphs in Mixed LoS/NLoS Environments

Carlino, L. ; Jin, D. ; Muma, M. ; Zoubir, A. M. (2019)
Robust Distributed Cooperative RSS-based Localization for Directed Graphs in Mixed LoS/NLoS Environments.
In: EURASIP Journal on Wireless Communications and Networking, 2019
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

The accurate and low-cost localization of sensors using a wireless sensor network is critically required in a wide range of today’s applications. We propose a novel, robust maximum likelihood-type method for distributed cooperative received signal strength-based localization in wireless sensor networks. To cope with mixed LoS/NLoS conditions, we model the measurements using a two-component Gaussian mixture model. The relevant channel parameters, including the reference path loss, the path loss exponent, and the variance of the measurement error, for both LoS and NLoS conditions, are assumed to be unknown deterministic parameters and are adaptively estimated. Unlike existing algorithms, the proposed method naturally takes into account the (possible) asymmetry of links between nodes. The proposed approach has a communication overhead upper-bounded by a quadratic function of the number of nodes and computational complexity scaling linearly with it. The convergence of the proposed method is guaranteed for compatible network graphs, and compatibility can be tested a priori by restating the problem as a graph coloring problem. Simulation results, carried out in comparison to a centralized benchmark algorithm, demonstrate the good overall performance and high robustness in mixed LoS/NLoS environments.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Carlino, L. ; Jin, D. ; Muma, M. ; Zoubir, A. M.
Art des Eintrags: Bibliographie
Titel: Robust Distributed Cooperative RSS-based Localization for Directed Graphs in Mixed LoS/NLoS Environments
Sprache: Englisch
Publikationsjahr: 24 Januar 2019
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: EURASIP Journal on Wireless Communications and Networking
Jahrgang/Volume einer Zeitschrift: 2019
URL / URN: https://doi.org/10.1186/s13638-018-1335-7
Zugehörige Links:
Kurzbeschreibung (Abstract):

The accurate and low-cost localization of sensors using a wireless sensor network is critically required in a wide range of today’s applications. We propose a novel, robust maximum likelihood-type method for distributed cooperative received signal strength-based localization in wireless sensor networks. To cope with mixed LoS/NLoS conditions, we model the measurements using a two-component Gaussian mixture model. The relevant channel parameters, including the reference path loss, the path loss exponent, and the variance of the measurement error, for both LoS and NLoS conditions, are assumed to be unknown deterministic parameters and are adaptively estimated. Unlike existing algorithms, the proposed method naturally takes into account the (possible) asymmetry of links between nodes. The proposed approach has a communication overhead upper-bounded by a quadratic function of the number of nodes and computational complexity scaling linearly with it. The convergence of the proposed method is guaranteed for compatible network graphs, and compatibility can be tested a priori by restating the problem as a graph coloring problem. Simulation results, carried out in comparison to a centralized benchmark algorithm, demonstrate the good overall performance and high robustness in mixed LoS/NLoS environments.

Zusätzliche Informationen:

Art.No.: 19, Erstveröffentlichung

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Robust Data Science
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung
Hinterlegungsdatum: 11 Sep 2017 07:20
Letzte Änderung: 03 Jul 2024 02:28
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen