TU Darmstadt / ULB / TUbiblio

Utility-based Configuration of Learning Factories Using a Multidimensional, Multiple-choice Knapsack Problem

Tisch, Michael ; Laudemann, Heiko ; Kreß, Antonio ; Metternich, Joachim (2017)
Utility-based Configuration of Learning Factories Using a Multidimensional, Multiple-choice Knapsack Problem.
In: Procedia Manufacturing, 7th Conference on Learning Factories, Darmstadt, Elsevier B.V., 9
doi: 10.1016/j.promfg.2017.04.017
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

The paper presents a structural approach to configure the technical system of a learning factory by considering learning targets and maximizing the utility. Local scope conditions and intended competencies are used to operationalize requirements. The composition of the module-based technical system can be optimized by maximizing its overall utility. Therefore, an exact and efficient optimization algorithm is developed solving a multidimensional multiple-choice knapsack problem combined with a two-dimensional bin packing problem. Restrictions are the available budget and the useable area of the learning factory. As a result, the configured technical system enables optimal target orientation of the learning factory. This procedure is finally applied on the Process Learning Factory CiP.

Typ des Eintrags: Artikel
Erschienen: 2017
Autor(en): Tisch, Michael ; Laudemann, Heiko ; Kreß, Antonio ; Metternich, Joachim
Art des Eintrags: Bibliographie
Titel: Utility-based Configuration of Learning Factories Using a Multidimensional, Multiple-choice Knapsack Problem
Sprache: Englisch
Publikationsjahr: 2017
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Procedia Manufacturing, 7th Conference on Learning Factories, Darmstadt, Elsevier B.V.
Jahrgang/Volume einer Zeitschrift: 9
DOI: 10.1016/j.promfg.2017.04.017
URL / URN: https://doi.org/10.1016/j.promfg.2017.04.017
Zugehörige Links:
Kurzbeschreibung (Abstract):

The paper presents a structural approach to configure the technical system of a learning factory by considering learning targets and maximizing the utility. Local scope conditions and intended competencies are used to operationalize requirements. The composition of the module-based technical system can be optimized by maximizing its overall utility. Therefore, an exact and efficient optimization algorithm is developed solving a multidimensional multiple-choice knapsack problem combined with a two-dimensional bin packing problem. Restrictions are the available budget and the useable area of the learning factory. As a result, the configured technical system enables optimal target orientation of the learning factory. This procedure is finally applied on the Process Learning Factory CiP.

Freie Schlagworte: learning factory, technical system, competency development
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > CiP Center für industrielle Produktivität
Hinterlegungsdatum: 01 Sep 2017 11:28
Letzte Änderung: 02 Jul 2024 14:52
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen