TU Darmstadt / ULB / TUbiblio

Proactive Caching of Music Videos Based on Audio Features, Mood, and Genre

Koch, Christian ; Krupii, Ganna ; Hausheer, David (2017)
Proactive Caching of Music Videos Based on Audio Features, Mood, and Genre.
Proceedings of the 8th ACM on Multimedia Systems Conference (MMSys). New York, NY, USA
doi: 10.1145/3083187.3083197
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The preferred channel for listening to music is shifting towards the Internet and especially to mobile networks. Here, the overall traffic is predicted to grow by 45% annually till 2021. However, the resulting increase in network traffic challenges mobile operators. As a result, methods are researched to decrease costly transit traffic and the traffic load inside operator networks using in-network and client-side caching. Additionally to traditional reactive caching, recent works show that proactive caching increases cache efficiency. Thus, in this work, a mobile network using proactive caching is assumed. As music represents the most popular content category on YouTube, this work focuses on studying the potential of proactively caching content of this particular category using a YouTube trace containing over 4 million music video user sessions. The contribution of this work is threefold: First, music content-specific user behavior is derived and audio features of the content are analyzed. Second, using these audio features, genre and mood classifiers are compared in order to guide the design of new proactive caching policies. Third, a novel trace-based evaluation methodology for music-specific proactive in-network caching is proposed and used to evaluate novel proactive caching policies to serve either an aggregate of users or individual clients.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2017
Autor(en): Koch, Christian ; Krupii, Ganna ; Hausheer, David
Art des Eintrags: Bibliographie
Titel: Proactive Caching of Music Videos Based on Audio Features, Mood, and Genre
Sprache: Englisch
Publikationsjahr: 9 März 2017
Ort: New York, NY, USA
Verlag: ACM
Reihe: MMSys'17
Veranstaltungstitel: Proceedings of the 8th ACM on Multimedia Systems Conference (MMSys)
Veranstaltungsort: New York, NY, USA
DOI: 10.1145/3083187.3083197
URL / URN: http://doi.acm.org/10.1145/3083187.3083197
Kurzbeschreibung (Abstract):

The preferred channel for listening to music is shifting towards the Internet and especially to mobile networks. Here, the overall traffic is predicted to grow by 45% annually till 2021. However, the resulting increase in network traffic challenges mobile operators. As a result, methods are researched to decrease costly transit traffic and the traffic load inside operator networks using in-network and client-side caching. Additionally to traditional reactive caching, recent works show that proactive caching increases cache efficiency. Thus, in this work, a mobile network using proactive caching is assumed. As music represents the most popular content category on YouTube, this work focuses on studying the potential of proactively caching content of this particular category using a YouTube trace containing over 4 million music video user sessions. The contribution of this work is threefold: First, music content-specific user behavior is derived and audio features of the content are analyzed. Second, using these audio features, genre and mood classifiers are compared in order to guide the design of new proactive caching policies. Third, a novel trace-based evaluation methodology for music-specific proactive in-network caching is proposed and used to evaluate novel proactive caching policies to serve either an aggregate of users or individual clients.

Freie Schlagworte: Collaborative Filtering, Content-aware Caching, Music Analysis, Music Classification, Network Simulation, Prefetching, Proactive Caching
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Multimedia Kommunikation
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen > Teilprojekt C3: Inhaltszentrische Sicht
Hinterlegungsdatum: 04 Aug 2017 09:36
Letzte Änderung: 10 Sep 2017 18:54
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen