TU Darmstadt / ULB / TUbiblio

Toward On-and-Off Magnetism: Reversible Electrochemistry to Control Magnetic Phase Transitions in Spinel Ferrites

Dasgupta, Subho ; Das, Bijoy ; Li, Qiang ; Wang, Di ; Baby, Tessy T. ; Indris, Sylvio ; Knapp, Michael ; Ehrenberg, Helmut ; Fink, Karin ; Kruk, Robert ; Hahn, Horst (2016)
Toward On-and-Off Magnetism: Reversible Electrochemistry to Control Magnetic Phase Transitions in Spinel Ferrites.
In: Advanced Functional Materials, 26 (41)
doi: 10.1002/adfm.201603411
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The magnetoelectric effect, i.e., electric-field control of magnetism in artificial heterostructures is usually limited to surface/interface atoms of the magnetic materials. In order to attain electrical control of magnetism in bulk ferromagnets, this study proposes to extend the definition of magnetoelectric phenomena to include reversible, chemistry-controlled magnetization switching. A large and reversible change in the room temperature magnetization in strong ferromagnets is reported, with electrochemistry-driven Li-ion exchange; carefully chosen spinel ferrites demonstrate a reversible magnetization variation up to 50% for CuFe2O4 and 70% for ZnFe2O4. In case of CuFe2O4, the magnetization variation is predominantly associated with the preferential reduction of Cu2+ to Cu+ ions, and, hence, abides a nearly one-to-one relationship with the amount of injected Li-ions. In addition, the reduction of Cu2+ also annihilates the Fe3+-O-Cu2+ magnetic interaction, resulting in a marked decrease in the Neel temperature of CuFe2O4. In contrast, the electrical tuning of superexchange interactions is found to play the decisive role in ZnFe2O4, where the simple electrochemical reduction model of magnetic cations can only explain a nominal fraction of the total magnetization variation, and indeed an electrochemically controlled reversible change in transition temperature is found necessary to account for the large magnetization variation observed.

Typ des Eintrags: Artikel
Erschienen: 2016
Autor(en): Dasgupta, Subho ; Das, Bijoy ; Li, Qiang ; Wang, Di ; Baby, Tessy T. ; Indris, Sylvio ; Knapp, Michael ; Ehrenberg, Helmut ; Fink, Karin ; Kruk, Robert ; Hahn, Horst
Art des Eintrags: Bibliographie
Titel: Toward On-and-Off Magnetism: Reversible Electrochemistry to Control Magnetic Phase Transitions in Spinel Ferrites
Sprache: Englisch
Publikationsjahr: 2 November 2016
Verlag: Wiley-VCH Verlag GmbH, Weinheim
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Functional Materials
Jahrgang/Volume einer Zeitschrift: 26
(Heft-)Nummer: 41
DOI: 10.1002/adfm.201603411
Kurzbeschreibung (Abstract):

The magnetoelectric effect, i.e., electric-field control of magnetism in artificial heterostructures is usually limited to surface/interface atoms of the magnetic materials. In order to attain electrical control of magnetism in bulk ferromagnets, this study proposes to extend the definition of magnetoelectric phenomena to include reversible, chemistry-controlled magnetization switching. A large and reversible change in the room temperature magnetization in strong ferromagnets is reported, with electrochemistry-driven Li-ion exchange; carefully chosen spinel ferrites demonstrate a reversible magnetization variation up to 50% for CuFe2O4 and 70% for ZnFe2O4. In case of CuFe2O4, the magnetization variation is predominantly associated with the preferential reduction of Cu2+ to Cu+ ions, and, hence, abides a nearly one-to-one relationship with the amount of injected Li-ions. In addition, the reduction of Cu2+ also annihilates the Fe3+-O-Cu2+ magnetic interaction, resulting in a marked decrease in the Neel temperature of CuFe2O4. In contrast, the electrical tuning of superexchange interactions is found to play the decisive role in ZnFe2O4, where the simple electrochemical reduction model of magnetic cations can only explain a nominal fraction of the total magnetization variation, and indeed an electrochemically controlled reversible change in transition temperature is found necessary to account for the large magnetization variation observed.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Gemeinschaftslabor Nanomaterialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 27 Jul 2017 08:06
Letzte Änderung: 27 Jul 2017 08:06
PPN:
Sponsoren: S.D. and H.H. would like to thank the financial support from the DFG grants DA 1781/1-1 and HA 1344/34-1, respectively., The DFT calculations have been performed on the JUSTUS HPC facility at the University of Ulm supported by the bwHPC initiative and the bwHPC-C5 project funded by the MWK and the German Research Foundation (DFG)., Q.L. was supported by the Helmholtz Research School "Energy-related catalysis".
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen