TU Darmstadt / ULB / TUbiblio

Finding the Best: Mathematical Optimization Based on Product and Process Requirements

Lüthen, Hendrik ; Gramlich, Sebastian ; Horn, Benjamin M. ; Mattmann, Ilyas ; Pfetsch, Marc E. ; Roos, Michael ; Ulbrich, Stefan ; Wagner, Christian ; Walter, Anna
Hrsg.: Groche, Peter ; Bruder, Enrico ; Gramlich, Sebastian (2017)
Finding the Best: Mathematical Optimization Based on Product and Process Requirements.
In: Manufacturing Integrated Design
Buchkapitel, Bibliographie

Kurzbeschreibung (Abstract)

The challenge of finding the best solution for a given problem plays a central role in many fields and disciplines. In mathematics, best solutions can be found by formulating and solving optimization problems. An optimization problem consists of an objective function, optimization variables, and optimization constraints, all of which define the solution space. Finding the optimal solution within this space means minimizing or maximizing the objective function by finding the optimal variables of the solution. Problems, such as geometry optimization of profiles (Hess and Ulbrich 2012), process control for stringer sheet forming (Bäcker et al. 2015) and optimization of the production sequence for branched sheet metal products (Günther and Martin 2006) are solved using mathematical optimization methods (Sects. 5.2 and 5.3). A variety of mathematical optimization methods is comprised within the field of engineering design optimization (EDO) (Roy et al. 2008).

Typ des Eintrags: Buchkapitel
Erschienen: 2017
Herausgeber: Groche, Peter ; Bruder, Enrico ; Gramlich, Sebastian
Autor(en): Lüthen, Hendrik ; Gramlich, Sebastian ; Horn, Benjamin M. ; Mattmann, Ilyas ; Pfetsch, Marc E. ; Roos, Michael ; Ulbrich, Stefan ; Wagner, Christian ; Walter, Anna
Art des Eintrags: Bibliographie
Titel: Finding the Best: Mathematical Optimization Based on Product and Process Requirements
Sprache: Englisch
Publikationsjahr: März 2017
Ort: Cham
Verlag: Springer
Buchtitel: Manufacturing Integrated Design
URL / URN: https://link.springer.com/chapter/10.1007/978-3-319-52377-4_...
Kurzbeschreibung (Abstract):

The challenge of finding the best solution for a given problem plays a central role in many fields and disciplines. In mathematics, best solutions can be found by formulating and solving optimization problems. An optimization problem consists of an objective function, optimization variables, and optimization constraints, all of which define the solution space. Finding the optimal solution within this space means minimizing or maximizing the objective function by finding the optimal variables of the solution. Problems, such as geometry optimization of profiles (Hess and Ulbrich 2012), process control for stringer sheet forming (Bäcker et al. 2015) and optimization of the production sequence for branched sheet metal products (Günther and Martin 2006) are solved using mathematical optimization methods (Sects. 5.2 and 5.3). A variety of mathematical optimization methods is comprised within the field of engineering design optimization (EDO) (Roy et al. 2008).

Freie Schlagworte: requirements, product properties, integration manufacturing-initiated solutions, shape optimization, optimization of deep drawing processes, partitioning optimization of unrollings
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physikalische Metallkunde
16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Produktentwicklung und Maschinenelemente (pmd)
Hinterlegungsdatum: 26 Jun 2017 05:45
Letzte Änderung: 26 Nov 2020 10:48
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen