TU Darmstadt / ULB / TUbiblio

Mechanism of Gas Separation through Amorphous Silicon Oxycarbide Membranes

Prasad, Ravi Mohan ; Jüttke, Yvonne ; Richter, Hannes ; Voigt, Ingolf ; Riedel, Ralf ; Gurlo, Aleksander (2016)
Mechanism of Gas Separation through Amorphous Silicon Oxycarbide Membranes.
In: Advanced Engineering Materials, 18 (5)
doi: 10.1002/adem.201500380
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Polymer-derived amorphous silicon oxycarbide (SiOC) ceramics are designed for hydrogen separation at high temperatures. To form amorphous SiOC top-coating with the thickness of about 300 nm, tubular porous gamma-Al2O3/a-Al2O3 substrates with gradient porosity are threefold coated by vinyl-functionalized polysiloxane and pyrolyzed at 700 degrees C under argon. N-2-physisorption measurement confirms formation of microporous material with a specific surface area of about 400 m(2) g(-1). Single gas permeance characterization of the SiOC membrane at 300 degrees C reveals H-2/CO2 and H-2/SF6 ideal permselectivities of about 10 and 320, respectively. The experimental gas permeance data are modeled using solid-state diffusion (for He and H-2) and gas translational diffusion (for CO2 and SF6) mechanisms.

Typ des Eintrags: Artikel
Erschienen: 2016
Autor(en): Prasad, Ravi Mohan ; Jüttke, Yvonne ; Richter, Hannes ; Voigt, Ingolf ; Riedel, Ralf ; Gurlo, Aleksander
Art des Eintrags: Bibliographie
Titel: Mechanism of Gas Separation through Amorphous Silicon Oxycarbide Membranes
Sprache: Englisch
Publikationsjahr: Mai 2016
Verlag: WILEY-V C H VERLAG GMBH, Weinheim
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Engineering Materials
Jahrgang/Volume einer Zeitschrift: 18
(Heft-)Nummer: 5
DOI: 10.1002/adem.201500380
Kurzbeschreibung (Abstract):

Polymer-derived amorphous silicon oxycarbide (SiOC) ceramics are designed for hydrogen separation at high temperatures. To form amorphous SiOC top-coating with the thickness of about 300 nm, tubular porous gamma-Al2O3/a-Al2O3 substrates with gradient porosity are threefold coated by vinyl-functionalized polysiloxane and pyrolyzed at 700 degrees C under argon. N-2-physisorption measurement confirms formation of microporous material with a specific surface area of about 400 m(2) g(-1). Single gas permeance characterization of the SiOC membrane at 300 degrees C reveals H-2/CO2 and H-2/SF6 ideal permselectivities of about 10 and 320, respectively. The experimental gas permeance data are modeled using solid-state diffusion (for He and H-2) and gas translational diffusion (for CO2 and SF6) mechanisms.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften
Hinterlegungsdatum: 19 Mai 2017 11:10
Letzte Änderung: 19 Mai 2017 11:10
PPN:
Sponsoren: DFG - German Research Foundation : Grant Number GU 992/3-2 and VO 1705/1-2 .
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen