TU Darmstadt / ULB / TUbiblio

Extending Perfect Spatial Hashing to Index Tuple-based Graphs Representing Super Carbon Nanotubes

Burger, Michael ; Nguyen, Giang Nam ; Bischof, Christian (2017)
Extending Perfect Spatial Hashing to Index Tuple-based Graphs Representing Super Carbon Nanotubes.
ICCS 2017. Zürich (12.06.2017-12.06.2017)
Konferenzveröffentlichung, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

In this paper, we demonstrate how to extend perfect spatial hashing (PSH) to the problem domain of indexing nodes in a graph that represents of Super Carbon Nanotubes (SCNTs). The goal of PSH is to hash multidimensional data without collisions. Since PSH results from the research on computer graphics, its principles and methods have only been tested on 2− and 3−dimensional problems. In our case, we need to hash up to 28 dimensions. In contrast to the original applications of PSH, we do not focus on GPUs as target hardware but on an efficient CPU implementation. Thus, this paper highlights the extensions to the original algorithm to make it suitable for higher dimensions and the representation of SCNTs. Comparing the compression and performance results of the new PSH based graphs and a structure-tailored custom data structure in our parallelized SCNT simulation software, we find, that PSH in some cases achieves better compression by a factor of 1.7 while only increasing the total runtime by several percent. In particular, after our extension, PSH can also be employed to index sparse multidimensional scientific data from other domains.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2017
Autor(en): Burger, Michael ; Nguyen, Giang Nam ; Bischof, Christian
Art des Eintrags: Bibliographie
Titel: Extending Perfect Spatial Hashing to Index Tuple-based Graphs Representing Super Carbon Nanotubes
Sprache: Englisch
Publikationsjahr: 12 Juni 2017
Buchtitel: Proceedings of the International Conference on Computational Science
Veranstaltungstitel: ICCS 2017
Veranstaltungsort: Zürich
Veranstaltungsdatum: 12.06.2017-12.06.2017
URL / URN: http://www.iccs-meeting.org/iccs2017/
Zugehörige Links:
Kurzbeschreibung (Abstract):

In this paper, we demonstrate how to extend perfect spatial hashing (PSH) to the problem domain of indexing nodes in a graph that represents of Super Carbon Nanotubes (SCNTs). The goal of PSH is to hash multidimensional data without collisions. Since PSH results from the research on computer graphics, its principles and methods have only been tested on 2− and 3−dimensional problems. In our case, we need to hash up to 28 dimensions. In contrast to the original applications of PSH, we do not focus on GPUs as target hardware but on an efficient CPU implementation. Thus, this paper highlights the extensions to the original algorithm to make it suitable for higher dimensions and the representation of SCNTs. Comparing the compression and performance results of the new PSH based graphs and a structure-tailored custom data structure in our parallelized SCNT simulation software, we find, that PSH in some cases achieves better compression by a factor of 1.7 while only increasing the total runtime by several percent. In particular, after our extension, PSH can also be employed to index sparse multidimensional scientific data from other domains.

Freie Schlagworte: perfect spatial hashing, data indexing, super carbon nanotubes, simulation
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Scientific Computing
Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 18 Mai 2017 07:13
Letzte Änderung: 03 Jul 2024 02:27
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen