TU Darmstadt / ULB / TUbiblio

Field assisted sintering of fine-grained Li7−3xLa3Zr2AlxO12 solid electrolyte and the influence of the microstructure on the electrochemical performance

Botros, Miriam ; Djenadic, Ruzica ; Clemens, Oliver ; Möller, Matthias ; Hahn, Horst (2016)
Field assisted sintering of fine-grained Li7−3xLa3Zr2AlxO12 solid electrolyte and the influence of the microstructure on the electrochemical performance.
In: Journal of Power Sources, 309
doi: 10.1016/j.jpowsour.2016.01.086
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The synthesis and processing of fine-grained Li7−3xLa3Zr2AlxO12 (x = 0.15, 0.17, 0.20) solid electrolyte (LLZO) is performed for the first time using a combination of nebulized spray pyrolysis (NSP) and field assisted sintering technique (FAST). Using FAST, the grain growth is suppressed and highly dense ceramics with 93% of the theoretical density are obtained. A tetragonal lattice distortion is observed after the sintering process. Although this structural modification has been reported to have lower Li-ion mobility compared to the cubic modification, the total conductivity of the sample at room temperature is found to be 0.33 mS cm−1, i.e. comparable to phase-pure cubic LLZO. The activation energy of 0.38 eV is also comparable to the literature values. Galvanostatic cycling of a symmetrical cell Li|LLZO|Li shows a good cycling stability over 100 h. The interfacial resistance in contact with Li-metal is determined using alternating current impedance spectroscopy to be 76 Ω cm2 and 69 Ω cm2 before and after cycling at different current densities, respectively.

Typ des Eintrags: Artikel
Erschienen: 2016
Autor(en): Botros, Miriam ; Djenadic, Ruzica ; Clemens, Oliver ; Möller, Matthias ; Hahn, Horst
Art des Eintrags: Bibliographie
Titel: Field assisted sintering of fine-grained Li7−3xLa3Zr2AlxO12 solid electrolyte and the influence of the microstructure on the electrochemical performance
Sprache: Englisch
Publikationsjahr: 31 März 2016
Verlag: Elsevier Science Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Power Sources
Jahrgang/Volume einer Zeitschrift: 309
DOI: 10.1016/j.jpowsour.2016.01.086
URL / URN: https://doi.org/10.1016/j.jpowsour.2016.01.086
Kurzbeschreibung (Abstract):

The synthesis and processing of fine-grained Li7−3xLa3Zr2AlxO12 (x = 0.15, 0.17, 0.20) solid electrolyte (LLZO) is performed for the first time using a combination of nebulized spray pyrolysis (NSP) and field assisted sintering technique (FAST). Using FAST, the grain growth is suppressed and highly dense ceramics with 93% of the theoretical density are obtained. A tetragonal lattice distortion is observed after the sintering process. Although this structural modification has been reported to have lower Li-ion mobility compared to the cubic modification, the total conductivity of the sample at room temperature is found to be 0.33 mS cm−1, i.e. comparable to phase-pure cubic LLZO. The activation energy of 0.38 eV is also comparable to the literature values. Galvanostatic cycling of a symmetrical cell Li|LLZO|Li shows a good cycling stability over 100 h. The interfacial resistance in contact with Li-metal is determined using alternating current impedance spectroscopy to be 76 Ω cm2 and 69 Ω cm2 before and after cycling at different current densities, respectively.

Freie Schlagworte: All-solid-state Li-ion battery, Garnet, Solid electrolyte, Microstructure, Spark plasma sintering, Interfacial resistance
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialdesign durch Synthese
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Gemeinschaftslabor Nanomaterialien
Hinterlegungsdatum: 12 Apr 2017 12:15
Letzte Änderung: 29 Jan 2019 07:59
PPN:
Sponsoren: The authors would like to thank Helmholtz Association (Germany) for financial support through the Helmholtz Portfolio Project “Electrochemical Storage in Systems - Reliability and Integration”.
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen